Your browser doesn't support javascript.
loading
Enhanced carrier densities in two-dimensional electron gas formed at BaSnO3/SrTaO3and SrSnO3/SrTaO3interfaces.
Mahatara, Sharad; Comes, Ryan; Kiefer, Boris.
Afiliação
  • Mahatara S; Department of Physics, New Mexico State University, Las Cruces, NM 88003, United States of America.
  • Comes R; National Renewable Energy Laboratory, Golden, CO 80401, United States of America.
  • Kiefer B; Department of Physics, Auburn University, Auburn, AL 36849, United States of America.
J Phys Condens Matter ; 36(14)2024 Jan 04.
Article em En | MEDLINE | ID: mdl-38128134
ABSTRACT
Two-dimensional electron gases (2DEGs) realized at perovskite oxide interfaces offer great promise for high charge carrier concentrations and low-loss charge transport. BaSnO3(BSO) and SrSnO3(SSO) are well-known wide bandgap semiconductors for their high mobility due to the Sn-5s-dominated conduction band minimum (CBM). Ta4+with a 5d1valence configuration in SrTaO3(STaO) injects thed1electron across the interface into the unoccupied Sn-5sstates in BSO and SSO. The present study uses ACBN0 density functional theory computations to explore charge transfer and 2DEG formation at BSO/STaO and SSO/STaO interfaces. The results of the ACBN0 computations confirm the Ta-5dto Sn-5scharge transfer. Moreover, the Sn-5s-dominated CBM is located ∼1.4 eV below the Fermi level, corresponding to an excess electron density in BSO of ∼1.5 × 1021cm-3, a ∼50% increase in electron density compared to the previously studied BSO/SrNbO3(SNO) interface. Similarly, the SSO/STaO interface shows an improvement in interface electron density by ∼20% compared to the BSO/SNO interface. The improved carrier density in SSO/STaO and BSO/STaO is further supported by ∼13% and ∼15% increase in electrical conductivities compared to BSO/SNO. In summary, BSO/STaO and SSO/STaO interfaces provide novel material platforms for 2DEGs formation and ultra-low-loss electron transport.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Phys Condens Matter Assunto da revista: BIOFISICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Phys Condens Matter Assunto da revista: BIOFISICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos