Your browser doesn't support javascript.
loading
γ-Aminobutyric acid enhances salt tolerance by sustaining ion homeostasis in apples.
Shi, Yanjiao; Li, Yuxing; Liu, Tanfang; Guo, Chengyu; Liang, Wei; Ma, Fengwang; Li, Cuiying.
Afiliação
  • Shi Y; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
  • Li Y; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
  • Liu T; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
  • Guo C; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
  • Liang W; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
  • Ma F; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
  • Li C; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China. Electronic address: lcy1262@nwafu.edu.cn.
Plant Physiol Biochem ; 206: 108306, 2024 Jan.
Article em En | MEDLINE | ID: mdl-38154298
ABSTRACT
Soil salinization had become a global ecological problem, which restricts the plant growth, and the quantity and quality of fruits. As a signaling molecule, γ-Aminobutyric acid (GABA) mediates a series of physiological processes and stress responses. Our previous research showed that GABA could alleviate drought, low phosphorus, cadmium stresses in apples, but the further research about its physiological mechanisms under salt stress was even more needed. The present study showed that the inhibition of salt stress on plant growth might be effectively alleviated by the treatment of 0.5 mM GABA, and the osmotic balance and photosynthetic capacity of plants could be maintained. Exogenous GABA could effectively inhibit the enrichment of reactive oxygen species and the uptake of Na+, while maintaining ion homeostasis. The experiment results indicated GABA could markedly promote the expression amount of Na+ and K+ transport-related genes (e.g., HKT1, AKT1, NHX1, SOS1, SOS2, and SOS3) in apples under salt stress. Overexpression and interference (RNAi) of MdGAD1 in apple roots, which is a crucial enzyme in the GABA biosynthesis, affected the salt tolerance of plants. Transgenic apple plants with roots of overexpression MdGAD1 showed less relative electrolyte leakage and more expression level of related ion transport genes than CK group, but RNAi MdGAD1 led to the opposite results. These results indicated that GABA accumulation could effectively strengthen the resistance of apple plants to salt stress and alleviate the injury of apple seedlings resulted from salinity.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Malus Idioma: En Revista: Plant Physiol Biochem Assunto da revista: BIOQUIMICA / BOTANICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Malus Idioma: En Revista: Plant Physiol Biochem Assunto da revista: BIOQUIMICA / BOTANICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China