Your browser doesn't support javascript.
loading
Defect graph neural networks for materials discovery in high-temperature clean-energy applications.
Witman, Matthew D; Goyal, Anuj; Ogitsu, Tadashi; McDaniel, Anthony H; Lany, Stephan.
Afiliação
  • Witman MD; Sandia National Laboratories, Livermore, CA, USA. mwitman@sandia.gov.
  • Goyal A; National Renewable Energy Laboratory, Golden, CO, USA.
  • Ogitsu T; Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
  • McDaniel AH; Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Lany S; Sandia National Laboratories, Livermore, CA, USA. amcdani@sandia.gov.
Nat Comput Sci ; 3(8): 675-686, 2023 Aug.
Article em En | MEDLINE | ID: mdl-38177319
ABSTRACT
We present a graph neural network approach that fully automates the prediction of defect formation enthalpies for any crystallographic site from the ideal crystal structure, without the need to create defected atomic structure models as input. Here we used density functional theory reference data for vacancy defects in oxides, to train a defect graph neural network (dGNN) model that replaces the density functional theory supercell relaxations otherwise required for each symmetrically unique crystal site. Interfaced with thermodynamic calculations of reduction entropies and associated free energies, the dGNN model is applied to the screening of oxides in the Materials Project database, connecting the zero-kelvin defect enthalpies to high-temperature process conditions relevant for solar thermochemical hydrogen production and other energy applications. The dGNN approach is applicable to arbitrary structures with an accuracy limited principally by the amount and diversity of the training data, and it is generalizable to other defect types and advanced graph convolution architectures. It will help to tackle future materials discovery problems in clean energy and beyond.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Óxidos / Redes Neurais de Computação Tipo de estudo: Prognostic_studies Idioma: En Revista: Nat Comput Sci Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Óxidos / Redes Neurais de Computação Tipo de estudo: Prognostic_studies Idioma: En Revista: Nat Comput Sci Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos