Your browser doesn't support javascript.
loading
Dynamic forecasting of severe acute graft-versus-host disease after transplantation.
Liu, Xueou; Cao, Yigeng; Guo, Ye; Gong, Xiaowen; Feng, Yahui; Wang, Yao; Wang, Mingyang; Cui, Mengxuan; Guo, Wenwen; Zhang, Luyang; Zhao, Ningning; Song, Xiaoqiang; Zheng, Xuetong; Chen, Xia; Shen, Qiujin; Zhang, Song; Song, Zhen; Li, Linfeng; Feng, Sizhou; Han, Mingzhe; Zhu, Xiaofan; Jiang, Erlie; Chen, Junren.
Afiliação
  • Liu X; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
  • Cao Y; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
  • Guo Y; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
  • Gong X; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
  • Feng Y; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
  • Wang Y; Yidu Cloud Technology Inc., Beijing, China.
  • Wang M; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
  • Cui M; Yidu Cloud Technology Inc., Beijing, China.
  • Guo W; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
  • Zhang L; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
  • Zhao N; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
  • Song X; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
  • Zheng X; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
  • Chen X; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
  • Shen Q; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
  • Zhang S; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
  • Song Z; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
  • Li L; Yidu Cloud Technology Inc., Beijing, China.
  • Feng S; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
  • Han M; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
  • Zhu X; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China. xfzhu@ihcams.ac.cn.
  • Jiang E; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China. jiangerlie@163.com.
  • Chen J; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China. chenjunren@ihcams.ac.cn.
Nat Comput Sci ; 2(3): 153-159, 2022 Mar.
Article em En | MEDLINE | ID: mdl-38177449
ABSTRACT
Forecasting of severe acute graft-versus-host disease (aGVHD) after transplantation is a challenging 'large p, small n' problem that suffers from nonuniform data sampling. We propose a dynamic probabilistic algorithm, daGOAT, that accommodates sampling heterogeneity, integrates multidimensional clinical data and continuously updates the daily risk score for severe aGVHD onset within a two-week moving window. In the studied cohorts, the cross-validated area under the receiver operator characteristic curve (AUROC) of daGOAT rose steadily after transplantation and peaked at ≥0.78 in both the adult and pediatric cohorts, outperforming the two-biomarker MAGIC score, three-biomarker Ann Arbor score, peri-transplantation features-based models and XGBoost. Simulation experiments indicated that the daGOAT algorithm is well suited for short time-series scenarios where the underlying process for event generation is smooth, multidimensional and where there are frequent and irregular data missing. daGOAT's broader utility was demonstrated by performance testing on a remotely different task, that is, prediction of imminent human postural change based on smartphone inertial sensor time-series data.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Nat Comput Sci Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Nat Comput Sci Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China