Your browser doesn't support javascript.
loading
Predictive analyses of regulatory sequences with EUGENe.
Klie, Adam; Laub, David; Talwar, James V; Stites, Hayden; Jores, Tobias; Solvason, Joe J; Farley, Emma K; Carter, Hannah.
Afiliação
  • Klie A; Department of Medicine, University of California San Diego, La Jolla, CA, USA.
  • Laub D; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA.
  • Talwar JV; Department of Medicine, University of California San Diego, La Jolla, CA, USA.
  • Stites H; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA.
  • Jores T; Department of Medicine, University of California San Diego, La Jolla, CA, USA.
  • Solvason JJ; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA.
  • Farley EK; Daniel Hand High School, Madison, CT, USA.
  • Carter H; Department of Genome Sciences, University of Washington, Seattle, WA, USA.
Nat Comput Sci ; 3(11): 946-956, 2023 Nov.
Article em En | MEDLINE | ID: mdl-38177592
ABSTRACT
Deep learning has become a popular tool to study cis-regulatory function. Yet efforts to design software for deep-learning analyses in regulatory genomics that are findable, accessible, interoperable and reusable (FAIR) have fallen short of fully meeting these criteria. Here we present elucidating the utility of genomic elements with neural nets (EUGENe), a FAIR toolkit for the analysis of genomic sequences with deep learning. EUGENe consists of a set of modules and subpackages for executing the key functionality of a genomics deep learning workflow (1) extracting, transforming and loading sequence data from many common file formats; (2) instantiating, initializing and training diverse model architectures; and (3) evaluating and interpreting model behavior. We designed EUGENe as a simple, flexible and extensible interface for streamlining and customizing end-to-end deep-learning sequence analyses, and illustrate these principles through application of the toolkit to three predictive modeling tasks. We hope that EUGENe represents a springboard towards a collaborative ecosystem for deep-learning applications in genomics research.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Genômica Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Nat Comput Sci Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Genômica Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Nat Comput Sci Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos