Your browser doesn't support javascript.
loading
Activation and Transformation of Methane on Boron-Doped Cobalt Oxide Cluster Cations CoBO2.
Wang, Ming; Zhang, Feng-Xiang; Chen, Zhi-Ying; Ma, Jia-Bi.
Afiliação
  • Wang M; Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
  • Zhang FX; Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
  • Chen ZY; Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
  • Ma JB; Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
Inorg Chem ; 63(3): 1537-1542, 2024 Jan 22.
Article em En | MEDLINE | ID: mdl-38181068
ABSTRACT
The cleavage of inert C-H bonds in methane at room temperature and the subsequent conversion into value-added products are quite challenging. Herein, the reactivity of boron-doped cobalt oxide cluster cations CoBO2+ toward methane under thermal collision conditions was studied by mass spectrometry experiments and quantum-chemical calculations. In this reaction, one H atom and the CH3 unit of methane were transformed separately to generate the product metaboric acid (HBO2) and one CoCH3+ ion, respectively. Theoretical calculations strongly suggest that a catalytic cycle can be completed by the recovery of CoBO2+ through the reaction of CoCH3+ with sodium perborate (NaBO3), and this reaction generates sodium methoxide (CH3ONa) as the other value-added product. This study shows that boron-doped cobalt oxide species are highly reactive to facilitate thermal methane transformation and may open a way to develop more effective approaches for methane (CH4) activation and conversion under mild conditions.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Inorg Chem Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Inorg Chem Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China