Your browser doesn't support javascript.
loading
Hydrogen-Induced Ultralow Optical Absorption and Mechanical Loss in Amorphous Silicon for Gravitational-Wave Detectors.
Molina-Ruiz, M; Markosyan, A; Bassiri, R; Fejer, M M; Abernathy, M; Metcalf, T H; Liu, X; Vajente, G; Ananyeva, A; Hellman, F.
Afiliação
  • Molina-Ruiz M; Department of Physics, University of California, Berkeley, California 94720, USA.
  • Markosyan A; Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA.
  • Bassiri R; Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA.
  • Fejer MM; Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA.
  • Abernathy M; Naval Research Laboratory, Code 7130, Washington, DC 20375, USA.
  • Metcalf TH; Naval Research Laboratory, Code 7130, Washington, DC 20375, USA.
  • Liu X; Naval Research Laboratory, Code 7130, Washington, DC 20375, USA.
  • Vajente G; LIGO Laboratory, California Institute of Technology, Pasadena, California 91125, USA.
  • Ananyeva A; LIGO Laboratory, California Institute of Technology, Pasadena, California 91125, USA.
  • Hellman F; Department of Physics, University of California, Berkeley, California 94720, USA.
Phys Rev Lett ; 131(25): 256902, 2023 Dec 22.
Article em En | MEDLINE | ID: mdl-38181375
ABSTRACT
The sensitivity of gravitational-wave detectors is limited by the mechanical loss associated with the amorphous coatings of the detectors' mirrors. Amorphous silicon has higher refraction index and lower mechanical loss than current high-index coatings, but its optical absorption at the wavelength used for the detectors is at present large. The addition of hydrogen to the amorphous silicon network reduces both optical absorption and mechanical loss for films prepared under a range of conditions at all measured wavelengths and temperatures, with a particularly large effect on films grown at room temperature. The uptake of hydrogen is greatest in the films grown at room temperature, but still below 1.5 at.% H, which show an ultralow optical absorption (below 10 ppm) measured at 2000 nm for 500-nm-thick films. These results show that hydrogenation is a promising strategy to reduce both optical absorption and mechanical loss in amorphous silicon, and may enable fabrication of mirror coatings for gravitational-wave detectors with improved sensitivity.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos