Your browser doesn't support javascript.
loading
High-Throughput Screening of pH-Dependent ß-sheet Self-Assembling Peptide.
Ye, Xin-Wei; Tian, Wen; Han, Lu; Li, Yi-Jing; Liu, Shan; Lai, Wen-Jia; Liu, Yi-Xuan; Wang, Lei; Yang, Pei-Pei; Wang, Hao.
Afiliação
  • Ye XW; CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China.
  • Tian W; China Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Han L; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Li YJ; CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China.
  • Liu S; CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China.
  • Lai WJ; CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China.
  • Liu YX; CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China.
  • Wang L; Division of Nanotechnology Development, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China.
  • Yang PP; CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China.
  • Wang H; CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China.
Small ; 20(24): e2307963, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38183362
ABSTRACT
pH-dependent peptide biomaterials hold tremendous potential for cell delivery and tissue engineering. However, identification of responsive self-assembling sequences with specified secondary structure remains a challenge. In this work, An experimental procedure based on the one-bead one-compound (OBOC) combinatorial library is developed to rapidly screen self-assembling ß-sheet peptides at neutral aqueous solution (pH 7.5) and disassemble at weak acidic condition (pH 6.5). Using the hydrophobic fluorescent molecule thioflavin T (ThT) as a probe, resin beads displaying self-assembling peptides show fluorescence under pH 7.5 due to the insertion of ThT into the hydrophobic domain, and are further cultured in pH 6.5 solution. The beads with extinguished fluorescence are selected. Three heptapeptides are identified that can self-assemble into nanofibers or nanoparticles at pH 7.5 and disassemble at pH 6.5. P1 (LVEFRHY) shows a rapid acid response and morphology transformation with pH modulation. Changes in the charges of histidine and hydrophobic phenyl motif of phenylalanine may play important roles in the formation of pH-responsive ß-sheet nanofiber. This high-throughput screening method provides an efficient way to identify pH-dependent ß-sheet self-assembling peptide and gain insights into structural design of such nanomaterials.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peptídeos Tipo de estudo: Diagnostic_studies / Screening_studies Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peptídeos Tipo de estudo: Diagnostic_studies / Screening_studies Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China