Your browser doesn't support javascript.
loading
Integration of Computational Docking into Anti-Cancer Drug Response Prediction Models.
Narykov, Oleksandr; Zhu, Yitan; Brettin, Thomas; Evrard, Yvonne A; Partin, Alexander; Shukla, Maulik; Xia, Fangfang; Clyde, Austin; Vasanthakumari, Priyanka; Doroshow, James H; Stevens, Rick L.
Afiliação
  • Narykov O; Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL 60439, USA.
  • Zhu Y; Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL 60439, USA.
  • Brettin T; Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL 60439, USA.
  • Evrard YA; Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
  • Partin A; Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL 60439, USA.
  • Shukla M; Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL 60439, USA.
  • Xia F; Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL 60439, USA.
  • Clyde A; Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL 60439, USA.
  • Vasanthakumari P; Department of Computer Science, The University of Chicago, Chicago, IL 60637, USA.
  • Doroshow JH; Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL 60439, USA.
  • Stevens RL; Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA.
Cancers (Basel) ; 16(1)2023 Dec 21.
Article em En | MEDLINE | ID: mdl-38201477
ABSTRACT
Cancer is a heterogeneous disease in that tumors of the same histology type can respond differently to a treatment. Anti-cancer drug response prediction is of paramount importance for both drug development and patient treatment design. Although various computational methods and data have been used to develop drug response prediction models, it remains a challenging problem due to the complexities of cancer mechanisms and cancer-drug interactions. To better characterize the interaction between cancer and drugs, we investigate the feasibility of integrating computationally derived features of molecular mechanisms of action into prediction models. Specifically, we add docking scores of drug molecules and target proteins in combination with cancer gene expressions and molecular drug descriptors for building response models. The results demonstrate a marginal improvement in drug response prediction performance when adding docking scores as additional features, through tests on large drug screening data. We discuss the limitations of the current approach and provide the research community with a baseline dataset of the large-scale computational docking for anti-cancer drugs.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Cancers (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Cancers (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos