Your browser doesn't support javascript.
loading
Nuciferine reduces inflammation induced by cerebral ischemia-reperfusion injury through the PI3K/Akt/NF-κB pathway.
Li, Jinhua; Dong, Shuze; Quan, Shengli; Ding, Shuxian; Zhou, Xuebin; Yu, Ye; Wu, Yarong; Huang, Wenhai; Shi, Qiyuan; Li, Qin.
Afiliação
  • Li J; School of Pharmacy, Hangzhou Medical College, No. 182 of Tian mu shan Road, XiHU District, Hangzhou, Zhejiang 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China.
  • Dong S; School of Pharmacy, Hangzhou Medical College, No. 182 of Tian mu shan Road, XiHU District, Hangzhou, Zhejiang 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China.
  • Quan S; School of Pharmacy, Hangzhou Medical College, No. 182 of Tian mu shan Road, XiHU District, Hangzhou, Zhejiang 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China.
  • Ding S; School of Pharmacy, Hangzhou Medical College, No. 182 of Tian mu shan Road, XiHU District, Hangzhou, Zhejiang 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China.
  • Zhou X; School of Pharmacy, Hangzhou Medical College, No. 182 of Tian mu shan Road, XiHU District, Hangzhou, Zhejiang 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China.
  • Yu Y; School of Pharmacy, Hangzhou Medical College, No. 182 of Tian mu shan Road, XiHU District, Hangzhou, Zhejiang 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China.
  • Wu Y; School of Pharmacy, Hangzhou Medical College, No. 182 of Tian mu shan Road, XiHU District, Hangzhou, Zhejiang 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China.
  • Huang W; School of Pharmacy, Hangzhou Medical College, No. 182 of Tian mu shan Road, XiHU District, Hangzhou, Zhejiang 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China.
  • Shi Q; School of Pharmacy, Hangzhou Medical College, No. 182 of Tian mu shan Road, XiHU District, Hangzhou, Zhejiang 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China. Electronic address: shiqiyuan@hmc.edu.cn.
  • Li Q; School of Pharmacy, Hangzhou Medical College, No. 182 of Tian mu shan Road, XiHU District, Hangzhou, Zhejiang 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China. Electronic address: 2020000301@hmc.edu.cn.
Phytomedicine ; 125: 155312, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38232541
ABSTRACT

BACKGROUND:

Cerebral ischemia has the characteristics of high incidence, mortality, and disability, which seriously damages people's health. Cerebral ischemia-reperfusion injury is the key pathological injury of this disease. However, there is a lack of drugs that can reduce cerebral ischemia-reperfusion injury in clinical practice. At present, a few studies have provided some evidence that nuciferine can reduce cerebral ischemia-reperfusion injury, but its specific mechanism of action is still unclear, and further research is still needed.

OBJECTIVE:

In this study, PC12 cells and SD rats were used to construct OGD/R and MCAO/R models, respectively. Combined with bioinformatics methods and experimental verification methods, the purpose of this study was to conduct a systematic and comprehensive study on the effect and mechanism of nuciferine on reducing inflammation induced by cerebral ischemia-reperfusion injury.

RESULTS:

Nuciferine can improve the cell viability of PC12 cells induced by OGD/R, reduce apoptosis, and reduce the expression of inflammation-related proteins; it can also improve the cognitive and motor dysfunction of MCAO/R-induced rats by behavioral tests, reduce the area of cerebral infarction, reduce the release of inflammatory factors TNF-α and IL-6 in serum and the expression of inflammation-related proteins in brain tissue.

CONCLUSION:

Nuciferine can reduce the inflammatory level of cerebral ischemia-reperfusion injury in vivo and in vitro models by acting on the PI3K/Akt/NF-κB signaling pathway, and has the potential to be developed as a drug for the treatment of cerebral ischemia-reperfusion injury.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aporfinas / Traumatismo por Reperfusão / Isquemia Encefálica Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Phytomedicine Assunto da revista: TERAPIAS COMPLEMENTARES Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aporfinas / Traumatismo por Reperfusão / Isquemia Encefálica Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Phytomedicine Assunto da revista: TERAPIAS COMPLEMENTARES Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China