Your browser doesn't support javascript.
loading
KBTBD2 promotes proliferation and migration of gastric cancer via activating EGFR signaling pathway.
Ding, Jishuang; Gao, Wei; Yang, Haiying; Duan, Lei; Sun, Dong; Liu, Luguang; Qu, Xianlin; Yu, Hang; Xu, Botao; Zhao, Siwei; Wang, Longgang; Chai, Jie.
Afiliação
  • Ding J; Department of Gastroenterological Surgery, Shanxian Central Hospital, Heze, Shandong, China; Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong
  • Gao W; Department of Science and Technology Report Center, Shandong Institute of Scientific and Technical Information, China.
  • Yang H; Department of Orthopedics, Binzhou People's Hospital Affiliated to Shandong First Medical University,Binzhou, Shandong, China.
  • Duan L; Department of Pediatrics, Boxing County People's Hospital, Binzhou, Shandong, China.
  • Sun D; Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
  • Liu L; Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
  • Qu X; Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
  • Yu H; Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
  • Xu B; Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
  • Zhao S; Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
  • Wang L; Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China. Electronic address: cakiller@126.com.
  • Chai J; Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China. Electronic address: jchai@sdfmu.edu.cn.
Pathol Res Pract ; 254: 155095, 2024 Feb.
Article em En | MEDLINE | ID: mdl-38237399
ABSTRACT

BACKGROUND:

To explore the role of Kelch repeat and BTB (POZ) domain containing 2 (KBTBD2) in Gastric cancer(GC) via studying the level of KBTBD2 and its impact on GC cells and mice model.

METHODS:

Expression of KBTBD2 in GC was analyzed by analysis of TCGA data, Western blotting and Real-time quantitative polymerasechain reaction (RT-qPCR). The role of KBTBD2 on GC cells proliferation, viability, invasion, migration and apoptosis in vitro were assessed by using western blotting,RT-qPCR,CCK-8, EDU, Colony Formation Assay, Wound healing assay, Transwell, JC-1 mitochondrial membrane potential and flow cytometry assay, respectively. And levels of Bcl-2, BAX, PARP, E-cadherin, Vimentin, N-cadherin, EGFR, SOS1, NROS, BRAF,ERK1/2 and GAPDH were tested by western blotting. Relation of KBTBD2 and epidermal growth factor receptor (EGFR) was predicted by KEGG analysis. KBTBD2 gene GSEA enrichment was analyzed by using R language. Moreover, CCK-8, western blotting, and wound healing assays were used to verify the correlation of KBTBD2 and EGFR pathway. Finally, tumor growth in mice was also investigated. Cells proliferation, migration and apoptosis were detected by Ki67 staining, Tunnel staining and mouse lung metastasis model.

RESULTS:

KBTBD2 was highly expressed in GC, and was related to poor prognosis. Moreover, silencing KBTBD2 suppressed GC cell proliferation, migration and invasion, while also inhibited the EMT, but promoted apoptosis. At the same time, KBTBD2 overexpression showed opposite results. In addition, KBTBD2 regulated the EGFR pathway. Further, silencing KBTBD2 inhibited tumor growth, cell proliferation and migration but promoted apoptosis in vivo, and KBTBD2 overexpression showed opposite results.

CONCLUSIONS:

KBTBD2 was highly expressed in GC. KBTBD2 promotes the progress of GC by activating EGFR signal pathway. KBTBD2 may thus be a novel target for treating GC.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Gástricas Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Pathol Res Pract Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Gástricas Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Pathol Res Pract Ano de publicação: 2024 Tipo de documento: Article