Your browser doesn't support javascript.
loading
New biomarkers underlying acetic acid tolerance in the probiotic yeast Saccharomyces cerevisiae var. boulardii.
Samakkarn, Wiwan; Vandecruys, Paul; Moreno, Maria Remedios Foulquié; Thevelein, Johan; Ratanakhanokchai, Khanok; Soontorngun, Nitnipa.
Afiliação
  • Samakkarn W; Excellent Research Laboratory for Yeast Innovation, Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.
  • Vandecruys P; Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Heverlee, Belgium.
  • Moreno MRF; Center for Microbiology, VIB, Leuven, Flanders, Belgium.
  • Thevelein J; Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Heverlee, Belgium.
  • Ratanakhanokchai K; Center for Microbiology, VIB, Leuven, Flanders, Belgium.
  • Soontorngun N; Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Heverlee, Belgium.
Appl Microbiol Biotechnol ; 108(1): 153, 2024 Jan 19.
Article em En | MEDLINE | ID: mdl-38240846
ABSTRACT
Evolutionary engineering experiments, in combination with omics technologies, revealed genetic markers underpinning the molecular mechanisms behind acetic acid stress tolerance in the probiotic yeast Saccharomyces cerevisiae var. boulardii. Here, compared to the ancestral Ent strain, evolved yeast strains could quickly adapt to high acetic acid levels (7 g/L) and displayed a shorter lag phase of growth. Bioinformatic-aided whole-genome sequencing identified genetic changes associated with enhanced strain robustness to acetic acid a duplicated sequence in the essential endocytotic PAN1 gene, mutations in a cell wall mannoprotein (dan4Thr192del), a lipid and fatty acid transcription factor (oaf1Ser57Pro) and a thiamine biosynthetic enzyme (thi13Thr332Ala). Induction of PAN1 and its associated endocytic complex SLA1 and END3 genes was observed following acetic acid treatment in the evolved-resistant strain when compared to the ancestral strain. Genome-wide transcriptomic analysis of the evolved Ent acid-resistant strain (Ent ev16) also revealed a dramatic rewiring of gene expression among genes associated with cellular transport, metabolism, oxidative stress response, biosynthesis/organization of the cell wall, and cell membrane. Some evolved strains also displayed better growth at high acetic acid concentrations and exhibited adaptive metabolic profiles with altered levels of secreted ethanol (4.0-6.4% decrease), glycerol (31.4-78.5% increase), and acetic acid (53.0-60.3% increase) when compared to the ancestral strain. Overall, duplication/mutations and transcriptional alterations are key mechanisms driving improved acetic acid tolerance in probiotic strains. We successfully used adaptive evolutionary engineering to rapidly and effectively elucidate the molecular mechanisms behind important industrial traits to obtain robust probiotic yeast strains for myriad biotechnological applications. KEY POINTS •Acetic acid adaptation of evolutionary engineered robust probiotic yeast S. boulardii •Enterol ev16 with altered genetic and transcriptomic profiles survives in up to 7 g/L acetic acid •Improved acetic acid tolerance of S. boulardii ev16 with mutated PAN1, DAN4, OAF1, and THI13 genes.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Probióticos / Proteínas de Saccharomyces cerevisiae / Saccharomyces boulardii Tipo de estudo: Prognostic_studies Idioma: En Revista: Appl Microbiol Biotechnol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Tailândia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Probióticos / Proteínas de Saccharomyces cerevisiae / Saccharomyces boulardii Tipo de estudo: Prognostic_studies Idioma: En Revista: Appl Microbiol Biotechnol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Tailândia