Your browser doesn't support javascript.
loading
Optimizing dynamic predictions from joint models using super learning.
Rizopoulos, Dimitris; Taylor, Jeremy M G.
Afiliação
  • Rizopoulos D; Department of Biostatistics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
  • Taylor JMG; Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
Stat Med ; 43(7): 1315-1328, 2024 Mar 30.
Article em En | MEDLINE | ID: mdl-38270062
ABSTRACT
Joint models for longitudinal and time-to-event data are often employed to calculate dynamic individualized predictions used in numerous applications of precision medicine. Two components of joint models that influence the accuracy of these predictions are the shape of the longitudinal trajectories and the functional form linking the longitudinal outcome history to the hazard of the event. Finding a single well-specified model that produces accurate predictions for all subjects and follow-up times can be challenging, especially when considering multiple longitudinal outcomes. In this work, we use the concept of super learning and avoid selecting a single model. In particular, we specify a weighted combination of the dynamic predictions calculated from a library of joint models with different specifications. The weights are selected to optimize a predictive accuracy metric using V-fold cross-validation. We use as predictive accuracy measures the expected quadratic prediction error and the expected predictive cross-entropy. In a simulation study, we found that the super learning approach produces results very similar to the Oracle model, which was the model with the best performance in the test datasets. All proposed methodology is implemented in the freely available R package JMbayes2.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Medicina de Precisão Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Stat Med Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Medicina de Precisão Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Stat Med Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Holanda