Your browser doesn't support javascript.
loading
ECDEP: identifying essential proteins based on evolutionary community discovery and subcellular localization.
Ye, Chen; Wu, Qi; Chen, Shuxia; Zhang, Xuemei; Xu, Wenwen; Wu, Yunzhi; Zhang, Youhua; Yue, Yi.
Afiliação
  • Ye C; School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China.
  • Wu Q; Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, 230036, China.
  • Chen S; School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China.
  • Zhang X; Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, 230036, China.
  • Xu W; School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China.
  • Wu Y; Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, 230036, China.
  • Zhang Y; School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China.
  • Yue Y; Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, 230036, China.
BMC Genomics ; 25(1): 117, 2024 Jan 26.
Article em En | MEDLINE | ID: mdl-38279081
ABSTRACT

BACKGROUND:

In cellular activities, essential proteins play a vital role and are instrumental in comprehending fundamental biological necessities and identifying pathogenic genes. Current deep learning approaches for predicting essential proteins underutilize the potential of gene expression data and are inadequate for the exploration of dynamic networks with limited evaluation across diverse species.

RESULTS:

We introduce ECDEP, an essential protein identification model based on evolutionary community discovery. ECDEP integrates temporal gene expression data with a protein-protein interaction (PPI) network and employs the 3-Sigma rule to eliminate outliers at each time point, constructing a dynamic network. Next, we utilize edge birth and death information to establish an interaction streaming source to feed into the evolutionary community discovery algorithm and then identify overlapping communities during the evolution of the dynamic network. SVM recursive feature elimination (RFE) is applied to extract the most informative communities, which are combined with subcellular localization data for classification predictions. We assess the performance of ECDEP by comparing it against ten centrality methods, four shallow machine learning methods with RFE, and two deep learning methods that incorporate multiple biological data sources on Saccharomyces. Cerevisiae (S. cerevisiae), Homo sapiens (H. sapiens), Mus musculus, and Caenorhabditis elegans. ECDEP achieves an AP value of 0.86 on the H. sapiens dataset and the contribution ratio of community features in classification reaches 0.54 on the S. cerevisiae (Krogan) dataset.

CONCLUSIONS:

Our proposed method adeptly integrates network dynamics and yields outstanding results across various datasets. Furthermore, the incorporation of evolutionary community discovery algorithms amplifies the capacity of gene expression data in classification.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Mapas de Interação de Proteínas Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: BMC Genomics Assunto da revista: GENETICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Mapas de Interação de Proteínas Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: BMC Genomics Assunto da revista: GENETICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China