Deep Multiview Clustering by Pseudo-Label Guided Contrastive Learning and Dual Correlation Learning.
IEEE Trans Neural Netw Learn Syst
; PP2024 Jan 30.
Article
em En
| MEDLINE
| ID: mdl-38289840
ABSTRACT
Deep multiview clustering (MVC) is to learn and utilize the rich relations across different views to enhance the clustering performance under a human-designed deep network. However, most existing deep MVCs meet two challenges. First, most current deep contrastive MVCs usually select the same instance across views as positive pairs and the remaining instances as negative pairs, which always leads to inaccurate contrastive learning (CL). Second, most deep MVCs only consider learning feature or cluster correlations across views, failing to explore the dual correlations. To tackle the above challenges, in this article, we propose a novel deep MVC framework by pseudo-label guided CL and dual correlation learning. Specifically, a novel pseudo-label guided CL mechanism is designed by using the pseudo-labels in each iteration to help removing false negative sample pairs, so that the CL for the feature distribution alignment can be more accurate, thus benefiting the discriminative feature learning. Different from most deep MVCs learning only one kind of correlation, we investigate both the feature and cluster correlations among views to discover the rich and comprehensive relations. Experiments on various datasets demonstrate the superiority of our method over many state-of-the-art compared deep MVCs. The source implementation code will be provided at https//github.com/ShizheHu/Deep-MVC-PGCL-DCL.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
IEEE Trans Neural Netw Learn Syst
Ano de publicação:
2024
Tipo de documento:
Article