Your browser doesn't support javascript.
loading
Adsorption and desorption of Hg(II) by four aged microplastics and its effects on gaseous elemental mercury production in seawater.
Zhou, Xuyuan; Wang, Yan; Liu, Ruhai; Mo, Bing; Li, Dongting; He, Likun; Wang, Yudong; Wang, Yunxu; Zheng, Hao; Li, Fengmin.
Afiliação
  • Zhou X; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
  • Wang Y; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
  • Liu R; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China. Electronic address: ruhai@ouc.edu.cn.
  • Mo B; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
  • Li D; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
  • He L; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
  • Wang Y; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
  • Wang Y; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
  • Zheng H; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
  • Li F; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
Ecotoxicol Environ Saf ; 272: 116036, 2024 Mar 01.
Article em En | MEDLINE | ID: mdl-38325271
ABSTRACT
Microplastics (MPs) weather after entering the environment gradually, and the interaction with metal ions in the aqueous environment has received extensive attention. However, there are few studies on Hg(Ⅱ), especially the effect of MPs on the release of Hg0(DEM) in water after entering the aqueous environment. In this study, four types of MPs (PP, PE, PET, PVC) were selected to study the adsorption and desorption behavior of Hg(Ⅱ) after photoaging and to explore the influence of MPs on the release of DEM in seawater under different lighting conditions. The results showed that the specific surface area, negative charges, and oxygen-containing functional group of MPs increased after aging. The adsorption capacity of aged MPs for Hg(Ⅱ) was significantly improved, which was consistent with the pseudo-first-order and pseudo-second-order model, indicating that the adsorption process was a chemical and physical adsorption. The fitting results of the in-particle diffusion model indicated that the adsorption was controlled by multiple steps. Hg(Ⅱ) was easier to desorb in the simulated gastric fluid environment. Because the aged MPs had the stronger binding force to Hg(Ⅱ), their desorption rate is lower than new MPs. Under visible light and UVA irradiation, MPs inhibited the release of Hg0. Under UVA, the mass of DEM produced in seawater with aged PE and PVC was higher than that of new PE and PVC. The aged PE and PVC could produce more ·O2-, which was conducive to the reduction of mercury. However, in UVB irradiation, the addition of MPs promoted the release of DEM, and ·O2- also played an important contribution in affecting the photochemical reaction of mercury. Therefore, the presence of aged MPs will significantly affect the water-air exchange of Hg in water. Compared with new MPs, aged MPs improved the contribution of free radicals in Hg transformation by releasing reactive oxygen species. This study extends the understanding of the effects of MPs on the geochemical cycle of Hg(Ⅱ) in seawater, better assesses the potential combined ecological risks of MPs and Hg(Ⅱ), and provides certain guidance for the pollution prevention and control of MPs.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Mercúrio Idioma: En Revista: Ecotoxicol Environ Saf Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Mercúrio Idioma: En Revista: Ecotoxicol Environ Saf Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China