Gelatin-Encapsulated Tetrahedral DNA Nanostructure Enhances Cellular Internalization for Treating Noise-Induced Hearing Loss.
Small
; 20(26): e2310604, 2024 Jun.
Article
em En
| MEDLINE
| ID: mdl-38329190
ABSTRACT
Nanoparticle-based drug delivery strategies have emerged as a crucial avenue for comprehensive sensorineural hearing loss treatment. Nevertheless, developing therapy vectors crossing both biological and cellular barriers has encountered significant challenges deriving from various external factors. Herein, the rational integration of gelatin nanoparticles (GNPs) with tetrahedral DNA nanostructures (TDNs) to engineer a distinct drug-delivery nanosystem (designed as TDN@GNP) efficiently enhances the biological permeability and cellular internalization, further resolving the dilemma of noise-induced hearing loss via loading epigallocatechin gallate (EGCG) with anti-lipid peroxidation property. Rationally engineering of TDN@GNP demonstrates dramatic alterations in the physicochemical key parameters of TDNs that are pivotal in cell-particle interactions and promote cellular uptake through multiple endocytic pathways. Furthermore, the EGCG-loaded nanosystem (TDN-EGCG@GNP) facilitates efficient inner ear drug delivery by superior permeability through the biological barrier (round window membrane), maintaining high drug concentration within the inner ear. The TDN-EGCG@GNP actively overcomes the cell membrane, exhibiting hearing protection from noise insults via reduced lipid peroxidation in outer hair cells and spiral ganglion neurons. This work exemplifies how integrating diverse vector functionalities can overcome biological and cellular barriers in the inner ear, offering promising applications for inner ear disorders.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
DNA
/
Catequina
/
Nanoestruturas
/
Gelatina
/
Perda Auditiva Provocada por Ruído
Limite:
Animals
Idioma:
En
Revista:
Small
Assunto da revista:
ENGENHARIA BIOMEDICA
Ano de publicação:
2024
Tipo de documento:
Article