Your browser doesn't support javascript.
loading
A novel metal-organic framework based electrochemical immunosensor for the rapid detection of Salmonella typhimurium detection in milk.
Zhan, Ke; Chen, Linlin; Li, Shanshan; Yu, Qiuying; Zhao, Zheng; Li, Junwei; Xing, Yunrui; Ren, Hongtao; Wang, Na; Zhang, Gaiping.
Afiliação
  • Zhan K; College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China; College of Veterinary Medicine International Joint Research Center for Animal Immunology, Zhengzhou 450046, Henan, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; Key Labo
  • Chen L; College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China; College of Veterinary Medicine International Joint Research Center for Animal Immunology, Zhengzhou 450046, Henan, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; Key Labo
  • Li S; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China; College of Veterinary Medicine International Joint Research Center for Animal Immunology, Zhengzhou 450046, Henan, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; Key Laboratory o
  • Yu Q; College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China; College of Veterinary Medicine International Joint Research Center for Animal Immunology, Zhengzhou 450046, Henan, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; Key Labo
  • Zhao Z; College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China; College of Veterinary Medicine International Joint Research Center for Animal Immunology, Zhengzhou 450046, Henan, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; Key Labo
  • Li J; College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China; College of Veterinary Medicine International Joint Research Center for Animal Immunology, Zhengzhou 450046, Henan, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; Key Labo
  • Xing Y; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, 450002 Henan, China.
  • Ren H; College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China; College of Veterinary Medicine International Joint Research Center for Animal Immunology, Zhengzhou 450046, Henan, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; Key Labo
  • Wang N; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China; College of Veterinary Medicine International Joint Research Center for Animal Immunology, Zhengzhou 450046, Henan, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; Key Laboratory o
  • Zhang G; College of Veterinary Medicine International Joint Research Center for Animal Immunology, Zhengzhou 450046, Henan, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; School of Advanced Agriculture Sciences, Peking University, 100871 Beijing, China; Key Laboratory of Animal Imm
Food Chem ; 444: 138672, 2024 Jun 30.
Article em En | MEDLINE | ID: mdl-38330614
ABSTRACT
Salmonella is one of the most prevalent pathogens causing foodborne diseases. In this study, a novel electrochemical immunosensor was designed for the rapid and accurate detection of Salmonella typhimurium (S. typhimurium) in milk. Platinum nanoparticles and Co/Zn-metal-organic framework @carboxylic multiwalled carbon nanotubes in the immunosensor acted synergistically to enhance the sensing sensitivity and stability. The materials and sensors were characterised using X-ray diffractometry, scanning electron microscopy, Fourier-transform infrared spectroscopy, differential pulse voltammetry, cyclic voltammetry, and other techniques. The optimised immunosensor showed a linear response for S. typhimurium concentrations in the range from 1.3 × 102 to 1.3 × 108 CFU mL-1, with a detection limit of 9.4 × 101 CFU mL-1. The assay also demonstrates good specificity, reproducibility, stability, and practical application potential, and the method can be extended to other foodborne pathogens.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Nanotubos de Carbono / Nanopartículas Metálicas / Estruturas Metalorgânicas Tipo de estudo: Diagnostic_studies Limite: Animals Idioma: En Revista: Food Chem Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Nanotubos de Carbono / Nanopartículas Metálicas / Estruturas Metalorgânicas Tipo de estudo: Diagnostic_studies Limite: Animals Idioma: En Revista: Food Chem Ano de publicação: 2024 Tipo de documento: Article