Your browser doesn't support javascript.
loading
Differential responses of green-synthesized iron nano-complexes in mitigating bicarbonate stress in almond trees.
Mohamadi, Soosan; Karimi, Soheil; Tavallali, Vahid.
Afiliação
  • Mohamadi S; Department of Horticultural Science, College of Aburaihan, University of Tehran, Tehran, Iran.
  • Karimi S; Department of Horticultural Science, College of Aburaihan, University of Tehran, Tehran, Iran.
  • Tavallali V; Department of Agriculture, Payame Noor University (PNU), P.O. Box: 19395-3697, Tehran, Iran.
Heliyon ; 10(3): e25322, 2024 Feb 15.
Article em En | MEDLINE | ID: mdl-38333848
ABSTRACT
High bicarbonate concentration in the soil induces iron (Fe) deficiency in fruit trees. According to the promising performance of nanomaterials in supplying mineral nutrients, in this study the potential of 4 green synthesized Fe nano-complexes (Fe-NCs) on alleviating bicarbonate stress in almond trees was evaluated in a soilless culture. The Fe-NCs were formed on extracts of husks of almond, pistachio, walnut, and pomegranate and their efficiency in Fe supply was compared to a commercial FeEDDHA fertilizer. The bicarbonate stress was imposed by adding sodium bicarbonate + calcium carbonate to the Hoagland's nutrient solution Control (without sodium bicarbonate + calcium carbonate); 10 mM NaHCO3+5 mM CaCO3; 20 mM NaHCO3+10 mM CaCO3. The plants were irrigated with nutrient solutions containing different concentrations of bicarbonate and different sources of Fe for 120 days. Bicarbonate stress induced chlorophyll decline, proline accumulation and leaf necrosis, and decreased leaf area. These responses were in line with decline in Fe concentration and development of oxidative damage in leaves, as hydrogen peroxide accumulation and membrane stability index decline were observed in the bicarbonate-stressed plants. Although walnut-nFe and pistachio-nFe intensified these adverse effects of bicarbonate stress, the almond-nFe and pomegranate-nFe recovered chlorophyll concentration, alleviated the oxidative damage, and restored Fe in the plants to the range of FeEDDHA under bicarbonate stress. Alleviating the damages was related to retrieving the concentration of proteins, hydrogen peroxide detoxification, and catalase activity in the leaves. These findings uncovered the potential of green synthesized almond-nFe and pomegranate-nFe as low-cost and effective Fe sources under bicarbonate stress.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Heliyon Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Irã

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Heliyon Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Irã