Effects of chronic fluorosis on the expression of VEGF/PI3K/AKT/eNOS in the gingival tissue of rats with orthodontic tooth movement.
Exp Ther Med
; 27(3): 121, 2024 Mar.
Article
em En
| MEDLINE
| ID: mdl-38361513
ABSTRACT
It has been reported that the force of orthodontic correction triggers periodontal tissue remodeling by affecting angiogenesis. However, the manifestation of the vascular response to orthodontic tooth movement in the setting of chronic fluorosis is unclear. The aim of the present study was to preliminarily explore the effect of orthodontic treatment on the angiogenesis of gingival tissue in rats with chronic fluorosis by monitoring changes in the expression of vascular endothelial growth factor (VEGF), phosphatidylinositol-3 kinase (PI3K), AKT (or protein kinase B) and endothelial nitric oxide synthase (eNOS) in the gingival tissue. A total of 60 rats were randomly divided equally into the orthodontic group (O group; n=30) and fluorosis orthodontic group (FO group; n=30). Each of these groups was divided into 0-, 3-, 7-, 14- and 21-day groups (n=6/group). Fluorosis and orthodontic tooth movement models were established, and rats in each group were sacrificed for tissue sampling at the corresponding time points. Tissue morphology was observed via hematoxylin and eosin (H&E) staining. The protein and mRNA expression levels of VEGF, PI3K, AKT and eNOS in gingival tissue were detected by western blotting and reverse transcription-quantitative polymerase chain reaction, respectively. The H&E staining images showed that the FO group had smaller blood vessels and reduced vascular proliferation compared with the O group. Furthermore, the mRNA and protein expression levels of VEGF, PI3K, AKT and eNOS were reduced in the gingiva of rats in the FO group compared with the O group, and certain reductions were significant during the delayed tooth movement period. In addition, with the extension of the application of orthodontic stress, the mRNA and protein expression levels of VEGF, PI3K, AKT and eNOS in the gingiva of the O and FO groups showed a trend of increasing at first and subsequently decreasing, which corresponds with the tooth movement cycle. In conclusion, chronic fluorosis may inhibit the angiogenesis and the expression of the VEGF/PI3K/AKT/eNOS pathway in gingival tissue of orthodontic tooth movement.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
Exp Ther Med
Ano de publicação:
2024
Tipo de documento:
Article