Your browser doesn't support javascript.
loading
Programmable RNA N6-methyladenosine editing with CRISPR/dCas13a in plants.
Shi, Chuanlin; Zou, Wenli; Liu, Xiangpei; Zhang, Hong; Li, Xiaofang; Fu, Guiling; Fei, Qili; Qian, Qian; Shang, Lianguang.
Afiliação
  • Shi C; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
  • Zou W; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
  • Liu X; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
  • Zhang H; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
  • Li X; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
  • Fu G; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.
  • Fei Q; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
  • Qian Q; College of Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi, China.
  • Shang L; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
Plant Biotechnol J ; 22(7): 1867-1880, 2024 Jul.
Article em En | MEDLINE | ID: mdl-38363049
ABSTRACT
N6-methyladenonsine (m6A) is the most prevalent internal modification of messenger RNA (mRNA) and plays critical roles in mRNA processing and metabolism. However, perturbation of individual m6A modification to reveal its function and the phenotypic effects is still lacking in plants. Here, we describe the construction and characterization of programmable m6A editing tools by fusing the m6A writers, the core catalytic domain of the MTA and MTB complex, and the AlkB homologue 5 (ALKBH5) eraser, to catalytically dead Cas13a (dCas13a) to edit individual m6A sites on mRNAs. We demonstrated that our m6A editors could efficiently and specifically deposit and remove m6A modifications on specific RNA transcripts in both Nicotiana benthamiana and Arabidopsis thaliana. Moreover, we found that targeting SHORT-ROOT (SHR) transcripts with a methylation editor could significantly increase its m6A levels with limited off-target effects and promote its degradation. This leads to a boost in plant growth with enlarged leaves and roots, increased plant height, plant biomass, and total grain weight in Arabidopsis. Collectively, these findings suggest that our programmable m6A editing tools can be applied to study the functions of individual m6A modifications in plants, and may also have potential applications for future crop improvement.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nicotiana / Adenosina / Arabidopsis Idioma: En Revista: Plant Biotechnol J Assunto da revista: BIOTECNOLOGIA / BOTANICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nicotiana / Adenosina / Arabidopsis Idioma: En Revista: Plant Biotechnol J Assunto da revista: BIOTECNOLOGIA / BOTANICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China