Your browser doesn't support javascript.
loading
Protein language models-assisted optimization of a uracil-N-glycosylase variant enables programmable T-to-G and T-to-C base editing.
He, Yan; Zhou, Xibin; Chang, Chong; Chen, Ge; Liu, Weikuan; Li, Geng; Fan, Xiaoqi; Sun, Mingsun; Miao, Chensi; Huang, Qianyue; Ma, Yunqing; Yuan, Fajie; Chang, Xing.
Afiliação
  • He Y; Fudan University, 220 Handan Road, Shanghai 200433, China; School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zh
  • Zhou X; School of Engineering, Westlake University, Hangzhou, Zhejiang 310014, China.
  • Chang C; School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang 310014, China; Institute of Basic Medical Sciences,
  • Chen G; School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang 310014, China; Institute of Basic Medical Sciences,
  • Liu W; Fudan University, 220 Handan Road, Shanghai 200433, China; School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zh
  • Li G; School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang 310014, China; Institute of Basic Medical Sciences,
  • Fan X; School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang 310014, China; Institute of Basic Medical Sciences,
  • Sun M; School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang 310014, China; Institute of Basic Medical Sciences,
  • Miao C; School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang 310014, China; Institute of Basic Medical Sciences,
  • Huang Q; School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang 310014, China; Institute of Basic Medical Sciences,
  • Ma Y; School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang 310014, China; Institute of Basic Medical Sciences,
  • Yuan F; School of Engineering, Westlake University, Hangzhou, Zhejiang 310014, China. Electronic address: yuanfajie@westlake.edu.cn.
  • Chang X; School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang 310014, China; Institute of Basic Medical Sciences,
Mol Cell ; 84(7): 1257-1270.e6, 2024 Apr 04.
Article em En | MEDLINE | ID: mdl-38377993
ABSTRACT
Current base editors (BEs) use DNA deaminases, including cytidine deaminase in cytidine BE (CBE) or adenine deaminase in adenine BE (ABE), to facilitate transition nucleotide substitutions. Combining CBE or ABE with glycosylase enzymes can induce limited transversion mutations. Nonetheless, a critical demand remains for BEs capable of generating alternative mutation types, such as T>G corrections. In this study, we leveraged pre-trained protein language models to optimize a uracil-N-glycosylase (UNG) variant with altered specificity for thymines (eTDG). Notably, after two rounds of testing fewer than 50 top-ranking variants, more than 50% exhibited over 1.5-fold enhancement in enzymatic activities. When eTDG was fused with nCas9, it induced programmable T-to-S (G/C) substitutions and corrected db/db diabetic mutation in mice (up to 55%). Our findings not only establish orthogonal strategies for developing novel BEs but also demonstrate the capacities of protein language models for optimizing enzymes without extensive task-specific training data.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ácidos Alcanossulfônicos / Uracila-DNA Glicosidase / Edição de Genes Limite: Animals Idioma: En Revista: Mol Cell Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ácidos Alcanossulfônicos / Uracila-DNA Glicosidase / Edição de Genes Limite: Animals Idioma: En Revista: Mol Cell Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2024 Tipo de documento: Article