Your browser doesn't support javascript.
loading
Combined Immunoinformatics to Design and Evaluate a Multi-Epitope Vaccine Candidate against Streptococcus suis Infection.
Liang, Song; Zhang, Shidan; Bao, Yinli; Zhang, Yumin; Liu, Xinyi; Yao, Huochun; Liu, Guangjin.
Afiliação
  • Liang S; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
  • Zhang S; OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
  • Bao Y; Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
  • Zhang Y; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
  • Liu X; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
  • Yao H; OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
  • Liu G; Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
Vaccines (Basel) ; 12(2)2024 Jan 29.
Article em En | MEDLINE | ID: mdl-38400121
ABSTRACT
Streptococcus suis (S. suis) is a zoonotic pathogen with multiple serotypes, and thus, multivalent vaccines generating cross-protection against S. suis infections are urgently needed to improve animal welfare and reduce antibiotic abuse. In this study, we established a systematic and comprehensive epitope prediction pipeline based on immunoinformatics. Ten candidate epitopes were ultimately selected for building the multi-epitope vaccine (MVSS) against S. suis infections. The ten epitopes of MVSS were all derived from highly conserved, immunogenic, and virulence-associated surface proteins in S. suis. In silico analyses revealed that MVSS was structurally stable and affixed with immune receptors, indicating that it would likely trigger strong immunological reactions in the host. Furthermore, mice models demonstrated that MVSS elicited high titer antibodies and diminished damages in S. suis serotype 2 and Chz infection, significantly reduced sequelae, induced cytokine transcription, and decreased organ bacterial burdens after triple vaccination. Meanwhile, anti-rMVSS serum inhibited five important S. suis serotypes in vitro, exerted beneficial protective effects against S. suis infections and significantly reduced histopathological damage in mice. Given the above, it is possible to develop MVSS as a universal subunit vaccine against multiple serotypes of S. suis infections.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Vaccines (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Vaccines (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China