Your browser doesn't support javascript.
loading
Research on carbon and nitrogen removal of tetramethylammonium hydroxide containing wastewater by combined anaerobic/integrated fixed film activated sludge process.
Lv, Juan; Li, Min; Yang, Guanyi; Cao, Yiqing; Xiao, Fan.
Afiliação
  • Lv J; School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China. Electronic address: lujuan@usst.edu.cn.
  • Li M; School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
  • Yang G; School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
  • Cao Y; School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
  • Xiao F; Shanghai Dong Zhen Environmental Engineering Technology Co., Ltd. Shanghai 201203, PR China.
Chemosphere ; 354: 141711, 2024 Apr.
Article em En | MEDLINE | ID: mdl-38484994
ABSTRACT
Tetramethylammonium hydroxide (TMAH) is widely used as a developer and etchant in the thin-film transistor liquid crystal display industry, which is the main component of developer wastewater with low C/N ratio. This study investigated TMAH degradation by combined anaerobic/integrated fixed film activated sludge (A/IFAS) process, especially for nitrogen removal. Effects of process condition on the TMAH degradation were studied, including dissolved oxygen concentration in IFAS reactor and the temperature of anaerobic reactor. Especially, the nitrogen removal was studied through the monitoring of intermediate products during TMAH biodegradation. The results indicated that lower the anaerobic treatment temperature can provide more available organic matters to enhance the denitrification in the subsequent IFAS reactor. Less oxygen supply in the IFAS reactor contributed to simultaneous nitrification and denitrification. Removal efficiency of total organic carbon and total nitrogen was up to 95.8% and 80.7%, when the temperature of anaerobic treatment was controlled at 30 °C with the DO kept at 0.7 mg/L. It indicated that A/IFAS process was efficient in carbon and nitrogen removal for TMAH degradation. The results also confirmed intermediate products of TMAH biodegradation can be used as the electron donor during denitrification, including trimethylamine, dimethylamine and methylamine. Illumina MiSeq sequencing showed that Proteobacteria was the dominant phylum contribute to nitrogen removal. Compared to sludge flocs in IFAS reactor, richer community and higher microbial diversity were observed in the biofilm.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Esgotos / Águas Residuárias / Compostos de Amônio Quaternário Idioma: En Revista: Chemosphere Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Esgotos / Águas Residuárias / Compostos de Amônio Quaternário Idioma: En Revista: Chemosphere Ano de publicação: 2024 Tipo de documento: Article