Your browser doesn't support javascript.
loading
Mitigation strategies for heavy metal toxicity and its negative effects on soil and plants.
Li, Quanheng.
Afiliação
  • Li Q; Research Center for Earth System Science, Yunnan University, Kunming, China.
  • Imran; College of Engineering, Agriculture Aviation Innovation Lab, South China Agriculture University, Guangzhou, China.
Int J Phytoremediation ; 26(9): 1439-1452, 2024.
Article em En | MEDLINE | ID: mdl-38494751
ABSTRACT
Heavy metal pollution threatens food security by accumulating in crops and soils, posing a significant challenge to modern agriculture due to its high toxicity. Urgent action is needed to restore affected agricultural fields. An efficient way to remove toxins is by bioremediation, which uses microorganisms. With the purpose of restoring soil in agriculture, this research attempts to assemble a consortium of microorganisms isolated from techno-genic soil. A number of promising strains, including Pseudomonas putida, Pantoea sp., Pseudomonas aeruginosa, Klebsiella oxytoca, and Agrobacterium tumefaciens were chosen based on their capacity to eliminate heavy metals from tests. Heavy metal removal (Cd, Hg, As, Pb, and Ni) and phytohormone production have been shown to be effective using consortiums (Pseudomonas aeruginosa, Klebsiella oxytoca, and Agrobacterium tumefaciens in a 112). In instances with mixed heavy-metal contamination, aeruginosa demonstrated efficacy because of its notable ability to absorb substantial quantities of heavy metals. The capacity of the cooperation to improve phytoremediation was investigated, with an emphasis on soil cleanup in agricultural areas. When combined with Sorghum bicolor L., it was able to remove roughly 16% As, 14% Hg, 32% Ni, 26% Cd, and 33% Pb from the soil.
Revolutionizing soil restoration, harnessing microbial consortia for effective heavy metal remediation, consortium D's remarkable capacity to combat mixed heavy metal contamination, and elevating phytoremediation potential by 16% As, 14% Hg, 32% Ni, 26% Cd, and 33% Pb removal are promising steps toward sustainable agriculture and enhanced food security.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Microbiologia do Solo / Poluentes do Solo / Biodegradação Ambiental / Metais Pesados Idioma: En Revista: Int J Phytoremediation Assunto da revista: BOTANICA / SAUDE AMBIENTAL Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Microbiologia do Solo / Poluentes do Solo / Biodegradação Ambiental / Metais Pesados Idioma: En Revista: Int J Phytoremediation Assunto da revista: BOTANICA / SAUDE AMBIENTAL Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China