Your browser doesn't support javascript.
loading
Defining Populations and Predicting Future Suitable Niche Space in the Geographically Disjunct, Narrowly Endemic Leafy Prairie-Clover (Dalea foliosa; Fabaceae).
Morris, Ashley B; Visger, Clayton J; Fox, Skyler J; Scalf, Cassandra; Fleming, Sunny; Call, Geoff.
Afiliação
  • Morris AB; Department of Biology, Furman University, Greenville, SC 29613, USA.
  • Visger CJ; Independent Researcher, San Antonio, TX 78247, USA.
  • Fox SJ; Department of Biological Sciences, California State University, Sacramento, CA 95819, USA.
  • Scalf C; Department of Biology, Furman University, Greenville, SC 29613, USA.
  • Fleming S; Department of Biology, Georgia Southern University, Statesboro, GA 30458, USA.
  • Call G; Independent Researcher, San Antonio, TX 78247, USA.
Plants (Basel) ; 13(4)2024 Feb 09.
Article em En | MEDLINE | ID: mdl-38498467
ABSTRACT
Conservation actions for rare species are often based on estimates of population size and number, which are challenging to capture in natural systems. Instead, many definitions of populations rely on arbitrarily defined distances between occurrences, which is not necessarily biologically meaningful despite having utility from a conservation management perspective. Here, we introduce a case study using the narrowly endemic and highly geographically disjunct leafy prairie-clover (Dalea foliosa), for which we use nuclear microsatellite loci to assess the current delimitations of populations and management units across its entire known range. We model future potential suitable niche space for the species to assess how currently defined populations could fare under predicted changes in climate over the next 50 years. Our results indicate that genetic variation within the species is extremely limited, particularly so in the distal portions of its range (Illinois and Alabama). Within the core of its range (Tennessee), genetic structure is not consistent with populations as currently defined. Our models indicate that predicted suitable niche space may only marginally overlap with the geology associated with this species (limestone glades and dolomite prairies) by 2070. Additional studies are needed to evaluate the extent to which populations are ecologically adapted to local environments and what role this could play in future translocation efforts.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Plants (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Plants (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos