Your browser doesn't support javascript.
loading
Enumeration of Rooted Binary Unlabeled Galled Trees.
Agranat-Tamir, Lily; Mathur, Shaili; Rosenberg, Noah A.
Afiliação
  • Agranat-Tamir L; Department of Biology, Stanford University, Stanford, CA, 94305, USA. lilyat@stanford.edu.
  • Mathur S; Department of Biology, Stanford University, Stanford, CA, 94305, USA.
  • Rosenberg NA; Department of Biology, Stanford University, Stanford, CA, 94305, USA.
Bull Math Biol ; 86(5): 45, 2024 Mar 22.
Article em En | MEDLINE | ID: mdl-38519704
ABSTRACT
Rooted binary galled trees generalize rooted binary trees to allow a restricted class of cycles, known as galls. We build upon the Wedderburn-Etherington enumeration of rooted binary unlabeled trees with n leaves to enumerate rooted binary unlabeled galled trees with n leaves, also enumerating rooted binary unlabeled galled trees with n leaves and g galls, 0 ⩽ g ⩽ ⌊ n - 1 2 ⌋ . The enumerations rely on a recursive decomposition that considers subtrees descended from the nodes of a gall, adopting a restriction on galls that amounts to considering only the rooted binary normal unlabeled galled trees in our enumeration. We write an implicit expression for the generating function encoding the numbers of trees for all n. We show that the number of rooted binary unlabeled galled trees grows with 0.0779 ( 4 . 8230 n ) n - 3 2 , exceeding the growth 0.3188 ( 2 . 4833 n ) n - 3 2 of the number of rooted binary unlabeled trees without galls. However, the growth of the number of galled trees with only one gall has the same exponential order 2.4833 as the number with no galls, exceeding it only in the subexponential term, 0.3910 n 1 2 compared to 0.3188 n - 3 2 . For a fixed number of leaves n, the number of galls g that produces the largest number of rooted binary unlabeled galled trees lies intermediate between the minimum of g = 0 and the maximum of g = ⌊ n - 1 2 ⌋ . We discuss implications in mathematical phylogenetics.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Conceitos Matemáticos / Modelos Biológicos Idioma: En Revista: Bull Math Biol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Conceitos Matemáticos / Modelos Biológicos Idioma: En Revista: Bull Math Biol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos