Your browser doesn't support javascript.
loading
The effect of the combined addition of copper, lithium and sulphur on the formation of Portland cement clinker.
Stanek, Theodor; Rybová, Alexandra; Bohác, Martin; Bartonícková, Eva; Palovcík, Jakub.
Afiliação
  • Stanek T; Binder systems, Research Institute for Building Materials, Brno, Czech Republic.
  • Rybová A; Binder systems, Research Institute for Building Materials, Brno, Czech Republic.
  • Bohác M; Binder systems, Research Institute for Building Materials, Brno, Czech Republic.
  • Bartonícková E; Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic.
  • Palovcík J; Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic.
J Microsc ; 294(2): 225-232, 2024 May.
Article em En | MEDLINE | ID: mdl-38558054
ABSTRACT
Both copper and lithium act as strong fluxes and lower the temperature of the clinker melt formation. Sulphur promotes the stabilisation of more hydraulically active modification of alite M1. It is expected that this combination could produce an alite clinker at significantly lower temperatures with high quality technological parameters. In this paper, the effect of combined oxides of copper, lithium and sulphur addition on the phase composition and clinker structure of Portland cement was investigated. The reference raw meal was prepared from common cement raw materials. Each of the mentioned oxides was added to the reference raw meal in two different concentrations, and 8 combinations were prepared. Chemically pure compounds (NH4)2SO4, CuO and Li2CO3 were used as a source of these oxides. The raw meals were burned to equilibrium at 1450°C. Their phase composition was determined by X-ray diffraction analysis, the microstructure was monitored by optical microscopy, and the microchemistry of the clinker phases was observed by electron microscopy with EDS analysis. It was found that in samples with high lithium or copper content, there is an increase in belite and free lime at the expense of alite. The combination of Cu + Li has the most negative effect, followed by Li alone and Cu alone. The higher SO3 content slightly offsets this negative effect.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Microsc Ano de publicação: 2024 Tipo de documento: Article País de afiliação: República Tcheca

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Microsc Ano de publicação: 2024 Tipo de documento: Article País de afiliação: República Tcheca