Your browser doesn't support javascript.
loading
Performance of risk models to predict mortality risk for patients with heart failure: evaluation in an integrated health system.
Ahmad, Faraz S; Hu, Ted Ling; Adler, Eric D; Petito, Lucia C; Wehbe, Ramsey M; Wilcox, Jane E; Mutharasan, R Kannan; Nardone, Beatrice; Tadel, Matevz; Greenberg, Barry; Yagil, Avi; Campagnari, Claudio.
Afiliação
  • Ahmad FS; Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, 676 North Saint Clair Street, Suite 600, Chicago, IL, 60611, USA. faraz.ahmad@northwestern.edu.
  • Hu TL; Bluhm Cardiovascular Institute Center for Artificial Intelligence, Northwestern Medicine, Chicago, IL, USA. faraz.ahmad@northwestern.edu.
  • Adler ED; Institute for Augmented Intelligence in Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. faraz.ahmad@northwestern.edu.
  • Petito LC; Institute for Augmented Intelligence in Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
  • Wehbe RM; Division of Cardiology, Department of Medicine, UC San Diego School of Medicine, La Jolla, CA, USA.
  • Wilcox JE; Division of Biostatistics, Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
  • Mutharasan RK; Bluhm Cardiovascular Institute Center for Artificial Intelligence, Northwestern Medicine, Chicago, IL, USA.
  • Nardone B; Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA.
  • Tadel M; Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, 676 North Saint Clair Street, Suite 600, Chicago, IL, 60611, USA.
  • Greenberg B; Bluhm Cardiovascular Institute Center for Artificial Intelligence, Northwestern Medicine, Chicago, IL, USA.
  • Yagil A; Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, 676 North Saint Clair Street, Suite 600, Chicago, IL, 60611, USA.
  • Campagnari C; Bluhm Cardiovascular Institute Center for Artificial Intelligence, Northwestern Medicine, Chicago, IL, USA.
Clin Res Cardiol ; 113(9): 1343-1354, 2024 Sep.
Article em En | MEDLINE | ID: mdl-38565710
ABSTRACT

BACKGROUND:

Referral of patients with heart failure (HF) who are at high mortality risk for specialist evaluation is recommended. Yet, most tools for identifying such patients are difficult to implement in electronic health record (EHR) systems.

OBJECTIVE:

To assess the performance and ease of implementation of Machine learning Assessment of RisK and EaRly mortality in Heart Failure (MARKER-HF), a machine-learning model that uses structured data that is readily available in the EHR, and compare it with two commonly used risk scores the Seattle Heart Failure Model (SHFM) and Meta-Analysis Global Group in Chronic (MAGGIC) Heart Failure Risk Score.

DESIGN:

Retrospective, cohort study.

PARTICIPANTS:

Data from 6764 adults with HF were abstracted from EHRs at a large integrated health system from 1/1/10 to 12/31/19. MAIN

MEASURES:

One-year survival from time of first cardiology or primary care visit was estimated using MARKER-HF, SHFM, and MAGGIC. Discrimination was measured by the area under the receiver operating curve (AUC). Calibration was assessed graphically. KEY

RESULTS:

Compared to MARKER-HF, both SHFM and MAGGIC required a considerably larger amount of data engineering and imputation to generate risk score estimates. MARKER-HF, SHFM, and MAGGIC exhibited similar discriminations with AUCs of 0.70 (0.69-0.73), 0.71 (0.69-0.72), and 0.71 (95% CI 0.70-0.73), respectively. All three scores showed good calibration across the full risk spectrum.

CONCLUSIONS:

These findings suggest that MARKER-HF, which uses readily available clinical and lab measurements in the EHR and required less imputation and data engineering than SHFM and MAGGIC, is an easier tool to identify high-risk patients in ambulatory clinics who could benefit from referral to a HF specialist.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Prestação Integrada de Cuidados de Saúde / Registros Eletrônicos de Saúde / Aprendizado de Máquina / Insuficiência Cardíaca Limite: Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Clin Res Cardiol Assunto da revista: CARDIOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Prestação Integrada de Cuidados de Saúde / Registros Eletrônicos de Saúde / Aprendizado de Máquina / Insuficiência Cardíaca Limite: Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Clin Res Cardiol Assunto da revista: CARDIOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos