Your browser doesn't support javascript.
loading
Amplification of Oxygen-Independent Free Radicals Based on a Glutathione Depletion and Biosynthesis Inhibition Strategy for Photothermal and Thermodynamic Therapy of Hypoxic Tumors.
Huang, Haowu; Li, Wenqiu; Zhao, Yiwang; Yao, Shunyu; Liu, Xiaoqing; Liu, Mingxing; Guo, Huiling.
Afiliação
  • Huang H; Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Sc
  • Li W; Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Sc
  • Zhao Y; Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Sc
  • Yao S; Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Sc
  • Liu X; Center for Materials Research and Analysis, Wuhan University of Technology, Wuhan 430070, PR China.
  • Liu M; Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Sc
  • Guo H; Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Sc
Article em En | MEDLINE | ID: mdl-38593037
ABSTRACT
Thermodynamic therapy (TDT) based on oxygen-independent free radicals exhibits promising potential for the treatment of hypoxic tumors. However, its therapeutic efficacy is seriously limited by the premature release of the drug and the free radical scavenging effect of glutathione (GSH) in tumors. Herein, we report a GSH depletion and biosynthesis inhibition strategy using EGCG/Fe-camouflaged gold nanorod core/ZIF-8 shell nanoparticles embedded with azo initiator 2,2'-azobis[2-(2-imidazolin-2-yl) propane] dihydrochloride (AIPH) and L-buthionine-sulfoximine (BSO) for tumor-targeting photothermal (PTT) and thermodynamic therapy (TDT). This nanoplatform (GNR@ZIF-8-AIPH/BSO@EGCG/Fe, GZABEF) endows a pH-responsive release performance. With the 67 kDa lamin receptor (67LR)-targeting ability of EGCG, GZABEF could selectively release oxygen-independent free radicals in tumor cells under 1064 nm laser irradiation. More importantly, Fe3+-mediated GSH depletion and BSO-mediated GSH biosynthesis inhibition significantly boosted the accumulation of alkyl radicals. In 4T1 cells, GZABEF induced cancer cell death via intracellular GSH depletion and GSH peroxidase 4 (GPX4) inactivation. In a subcutaneous xenograft model of 4T1, GZABEF demonstrated remarkable tumor growth inhibition (78.2%). In addition, excellent biosafety and biocompatibility of GZABEF were observed both in vitro and in vivo. This study provides inspiration for amplified TDT/PTT-mediated antitumor efficacy.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Ilhas Seychelles

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Ilhas Seychelles