Your browser doesn't support javascript.
loading
"All in One" Strategy for Achieving Superprotonic Conductivity by Incorporating Strong Acids into a Robust Imidazole-Linked Covalent Organic Framework.
Luan, Tian-Xiang; Zhang, Pengtu; Wang, Qiurong; Xiao, Xin; Feng, Yijing; Yuan, Shiling; Li, Pei-Zhou; Xu, Qiang.
Afiliação
  • Luan TX; School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Inter-disciplinary Science, Shandong University, Ji'nan 250100, Shandong Prov
  • Zhang P; School of Chemical Engineering, Shandong Institute of Pertroleum and Chemical Technology, Dongying 257061, Shandong Province, China.
  • Wang Q; School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Inter-disciplinary Science, Shandong University, Ji'nan 250100, Shandong Prov
  • Xiao X; Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Che
  • Feng Y; School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Inter-disciplinary Science, Shandong University, Ji'nan 250100, Shandong Prov
  • Yuan S; School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Inter-disciplinary Science, Shandong University, Ji'nan 250100, Shandong Prov
  • Li PZ; School of Chemical Engineering, Shandong Institute of Pertroleum and Chemical Technology, Dongying 257061, Shandong Province, China.
  • Xu Q; School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Inter-disciplinary Science, Shandong University, Ji'nan 250100, Shandong Prov
Nano Lett ; 2024 Apr 11.
Article em En | MEDLINE | ID: mdl-38603798
ABSTRACT
The fabrication of solid-state proton-conducting electrolytes possessing both high performance and long-life reusability is significant but challenging. An "all-in-one" composite, H3PO4@PyTFB-1-SO3H, including imidazole, sulfonic acid, and phosphoric acid, which are essential for proton conduction, was successfully prepared by chemical post-modification and physical loading in the rationally pre-synthesized imidazole-based nanoporous covalent organic framework (COF), PyTFB-1. The resultant H3PO4@PyTFB-1-SO3H exhibits superhigh proton conductivity with its value even highly up to 1.15 × 10-1 S cm-1 at 353 K and 98% relative humidity (RH), making it one of the highest COF-based composites reported so far under the same conditions. Experimental studies and theoretical calculations further confirmed that the imidazole and sulfonic acid groups have strong interactions with the H3PO4 molecules and the synergistic effect of these three groups dramatically improves the proton conductivity properties of H3PO4@PyTFB-1-SO3H. This work demonstrated that by aggregating multiple proton carriers into one composite, effective proton-conducting electrolyte can be feasibly achieved.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nano Lett Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nano Lett Ano de publicação: 2024 Tipo de documento: Article