Your browser doesn't support javascript.
loading
Towards quantifying biomarkers for respiratory distress in preterm infants: Machine learning on mid infrared spectroscopy of lipid mixtures.
Ahmed, Waseem; Veluthandath, Aneesh Vincent; Madsen, Jens; Clark, Howard W; Dushianthan, Ahilanandan; Postle, Anthony D; Wilkinson, James S; Senthil Murugan, Ganapathy.
Afiliação
  • Ahmed W; Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, Hampshire, UK. Electronic address: waseem.ahmed@soton.ac.uk.
  • Veluthandath AV; Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, Hampshire, UK.
  • Madsen J; Neonatology, Faculty of Population Health Sciences, EGA Institute for Women's, Health, University College London, London, WC1E 6AU, London, UK.
  • Clark HW; Neonatology, Faculty of Population Health Sciences, EGA Institute for Women's, Health, University College London, London, WC1E 6AU, London, UK.
  • Dushianthan A; Perioperative and Critical Care Theme, NIHR Biomedical Research Centre, University, Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, Hampshire, UK.
  • Postle AD; Academic Unit of Clinical & Experimental Sciences, Faculty of Medicine, Southampton General Hospital, Southampton, SO16 6YD, Hampshire, UK.
  • Wilkinson JS; Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, Hampshire, UK.
  • Senthil Murugan G; Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, Hampshire, UK.
Talanta ; 275: 126062, 2024 Aug 01.
Article em En | MEDLINE | ID: mdl-38615457
ABSTRACT
Neonatal respiratory distress syndrome (nRDS) is a challenging condition to diagnose which can lead to delays in receiving appropriate treatment. Mid infrared (IR) spectroscopy is capable of measuring the concentrations of two diagnostic nRDS biomarkers, lecithin (L) and sphingomyelin (S) with the potential for point of care (POC) diagnosis and monitoring. The effects of varying other lipid species present in lung surfactant on the mid IR spectra used to train machine learning models are explored. This study presents a lung lipid model of five lipids present in lung surfactant and varies each in a systematic approach to evaluate the ability of machine learning models to predict the lipid concentrations, the L/S ratio and to quantify the uncertainty in the predictions using the jackknife + -after-bootstrap and variant bootstrap methods. We establish the L/S ratio can be determined with an uncertainty of approximately ±0.3 mol/mol and we further identify the 5 most prominent wavenumbers associated with each machine learning model.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Síndrome do Desconforto Respiratório do Recém-Nascido / Espectrofotometria Infravermelho / Recém-Nascido Prematuro / Biomarcadores / Aprendizado de Máquina Limite: Humans / Newborn Idioma: En Revista: Talanta Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Síndrome do Desconforto Respiratório do Recém-Nascido / Espectrofotometria Infravermelho / Recém-Nascido Prematuro / Biomarcadores / Aprendizado de Máquina Limite: Humans / Newborn Idioma: En Revista: Talanta Ano de publicação: 2024 Tipo de documento: Article