Your browser doesn't support javascript.
loading
Delving into theoretical and computational considerations for accurate calculation of chemical shifts in paramagnetic transition metal systems using quantum chemical methods.
Islam, Md Ashraful; Pell, Andrew J.
Afiliação
  • Islam MA; Centre de RMN à Très Hauts Champs de Lyon, UMR-5082, CNRS/UCB Lyon 1/ENS de Lyon, 69100 Villeurbanne, France. ashraful.islam@ens-lyon.fr.
  • Pell AJ; Centre de RMN à Très Hauts Champs de Lyon, UMR-5082, CNRS/UCB Lyon 1/ENS de Lyon, 69100 Villeurbanne, France. ashraful.islam@ens-lyon.fr.
Phys Chem Chem Phys ; 26(16): 12786-12798, 2024 Apr 24.
Article em En | MEDLINE | ID: mdl-38619872
ABSTRACT
The chemical shielding tensor for a paramagnetic system has been derived from the macroscopically observed magnetization using the perturbation theory. An approach to calculate the paramagnetic chemical shifts in transition metal systems based on the spin-only magnetic susceptibility directly evaluated from the ab initio Hilbert space of the electronic Zeeman Hamiltonian has been discussed. Computationally, several advantages are associated with this

approach:

(a) it includes the state-specific paramagnetic Curie (first-order) and Van Vleck (second-order) contributions of the paramagnetic ion to the paramagnetic chemical shifts; (b) thus it avoids the system-specific modeling and evaluating effectively in terms of the electron paramagnetic resonance (EPR) spin Hamiltonian parameters of the magnetic moment of the paramagnetic ion formulated previously; (c) it can be utilized both in the point-dipole (PD) approximation (in the long-range) and with the quantum chemical (QC) method based the hyperfine tensors (in the short-range). Additionally, we have examined the predictive performance of various density functional theory (DFT) functionals of different families and commonly used core-augmented basis sets for nuclear magnetic resonance (NMR) chemical shifts. A selection of transition metal ion complexes with and without first-order orbital contributions, namely the [M(AcPyOx)3(BPh)]+ complexes of M = Mn2+, Ni2+ and Co2+ ions and CoTp2 complex and their reported NMR chemical shifts are studied from QC methods for illustration.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: França