Your browser doesn't support javascript.
loading
Potential therapeutic target identification in the novel 2019 coronavirus: insight from homology modeling and blind docking study.
Durojaye, Olanrewaju Ayodeji; Mushiana, Talifhani; Uzoeto, Henrietta Onyinye; Cosmas, Samuel; Udowo, Victor Malachy; Osotuyi, Abayomi Gaius; Ibiang, Glory Omini; Gonlepa, Miapeh Kous.
Afiliação
  • Durojaye OA; School of Life Sciences, Department of Molecular and Cell Biology, University of Science and Technology of China, Hefei, China.
  • Mushiana T; Department of Biochemistry, University of Nigeria, Nsukka, Enugu State Nigeria.
  • Uzoeto HO; Department of Chemical Sciences, Coal City University, Emene, Enugu State Nigeria.
  • Cosmas S; School of Chemistry and Material Sciences, Department of Chemistry, University of Science and Technology of China, Hefei, China.
  • Udowo VM; Department of Biological Sciences, Coal City University, Emene, Enugu State Nigeria.
  • Osotuyi AG; Department of Biochemistry, University of Nigeria, Nsukka, Enugu State Nigeria.
  • Ibiang GO; Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China.
  • Gonlepa MK; School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China.
Egypt J Med Hum Genet ; 21(1): 44, 2020.
Article em En | MEDLINE | ID: mdl-38624499
ABSTRACT

Background:

The 2019-nCoV which is regarded as a novel coronavirus is a positive-sense single-stranded RNA virus. It is infectious to humans and is the cause of the ongoing coronavirus outbreak which has elicited an emergency in public health and a call for immediate international concern has been linked to it. The coronavirus main proteinase which is also known as the 3C-like protease (3CLpro) is a very important protein in all coronaviruses for the role it plays in the replication of the virus and the proteolytic processing of the viral polyproteins. The resultant cytotoxic effect which is a product of consistent viral replication and proteolytic processing of polyproteins can be greatly reduced through the inhibition of the viral main proteinase activities. This makes the 3C-like protease of the coronavirus a potential and promising target for therapeutic agents against the viral infection.

Results:

This study describes the detailed computational process by which the 2019-nCoV main proteinase coding sequence was mapped out from the viral full genome, translated and the resultant amino acid sequence used in modeling the protein 3D structure. Comparative physiochemical studies were carried out on the resultant target protein and its template while selected HIV protease inhibitors were docked against the protein binding sites which contained no co-crystallized ligand.

Conclusion:

In line with results from this study which has shown great consistency with other scientific findings on coronaviruses, we recommend the administration of the selected HIV protease inhibitors as first-line therapeutic agents for the treatment of the current coronavirus epidemic.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Egypt J Med Hum Genet Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Egypt J Med Hum Genet Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China