Validation and Estimation of Obesity-Induced Intervertebral Disc Degeneration through Subject-Specific Finite Element Modelling of Functional Spinal Units.
Bioengineering (Basel)
; 11(4)2024 Mar 31.
Article
em En
| MEDLINE
| ID: mdl-38671766
ABSTRACT
(1) Background:
Intervertebral disc degeneration has been linked to obesity; its potential mechanical effects on the intervertebral disc remain unknown. This study aimed to develop and validate a patient-specific model of L3-L4 vertebrae and then use the model to estimate the impact of increasing body weight on disc degeneration. (2)Methods:
A three-dimensional model of the functional spinal unit of L3-L4 vertebrae and its components were developed and validated. Validation was achieved by comparing the range of motions (RoM) and intradiscal pressures with the previous literature. Subsequently, the validated model was loaded according to the body mass index and estimated stress, deformation, and RoM to assess disc degeneration. (3)Results:
During validation, L3-L4 RoM and intradiscal pressures flexion 5.17° and 1.04 MPa, extension 1.54° and 0.22 MPa, lateral bending 3.36° and 0.54 MPa, axial rotation 1.14° and 0.52 MPa, respectively. When investigating the impact of weight on disc degeneration, escalating from normal weight to obesity reveals an increased RoM, by 3.44% during flexion, 22.7% during extension, 29.71% during lateral bending, and 33.2% during axial rotation, respectively. Also, stress and disc deformation elevated with increasing weight across all RoM. (4)Conclusions:
The predicted mechanical responses of the developed model closely matched the validation dataset. The validated model predicts disc degeneration under increased weight and could lay the foundation for future recommendations aimed at identifying predictors of lower back pain due to disc degeneration.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Bioengineering (Basel)
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Índia