Your browser doesn't support javascript.
loading
Polyacrylamide/sodium alginate/sodium chloride photochromic hydrogel with high conductivity, anti-freezing property and fast response for information storage and electronic skin.
Chen, Xiaohu; Cui, Jiashu; Liu, Zhisheng; Wang, Yanen; Li, Mingyang; Zhang, Juan; Pan, Siyu; Wang, Mengjie; Bao, Chengwei; Wei, Qinghua.
Afiliação
  • Chen X; Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Bio-additive manufacturing university-enterprise joint research center of Shaanxi Province, Northwestern Polytechnical University, Xi'an, Shaanxi 710072,
  • Cui J; Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Bio-additive manufacturing university-enterprise joint research center of Shaanxi Province, Northwestern Polytechnical University, Xi'an, Shaanxi 710072,
  • Liu Z; Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Bio-additive manufacturing university-enterprise joint research center of Shaanxi Province, Northwestern Polytechnical University, Xi'an, Shaanxi 710072,
  • Wang Y; Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Bio-additive manufacturing university-enterprise joint research center of Shaanxi Province, Northwestern Polytechnical University, Xi'an, Shaanxi 710072,
  • Li M; Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Bio-additive manufacturing university-enterprise joint research center of Shaanxi Province, Northwestern Polytechnical University, Xi'an, Shaanxi 710072,
  • Zhang J; Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Bio-additive manufacturing university-enterprise joint research center of Shaanxi Province, Northwestern Polytechnical University, Xi'an, Shaanxi 710072,
  • Pan S; Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Bio-additive manufacturing university-enterprise joint research center of Shaanxi Province, Northwestern Polytechnical University, Xi'an, Shaanxi 710072,
  • Wang M; Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Bio-additive manufacturing university-enterprise joint research center of Shaanxi Province, Northwestern Polytechnical University, Xi'an, Shaanxi 710072,
  • Bao C; Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Bio-additive manufacturing university-enterprise joint research center of Shaanxi Province, Northwestern Polytechnical University, Xi'an, Shaanxi 710072,
  • Wei Q; Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Bio-additive manufacturing university-enterprise joint research center of Shaanxi Province, Northwestern Polytechnical University, Xi'an, Shaanxi 710072,
Int J Biol Macromol ; 268(Pt 2): 131972, 2024 May.
Article em En | MEDLINE | ID: mdl-38697436
ABSTRACT
Photochromic hydrogels have promising prospects in areas such as wearable device, information encryption technology, optoelectronic display technology, and electronic skin. However, there are strict requirements for the properties of photochromic hydrogels in practical engineering applications, especially in some extreme application environments. The preparation of photochromic hydrogels with high transparency, high toughness, fast response, colour reversibility, excellent electrical conductivity, and anti-freezing property remains a challenge. In this study, a novel photochromic hydrogel (PAAm/SA/NaCl-Mo7) was prepared by loading ammonium molybdate (Mo7) and sodium chloride (NaCl) into a dual-network hydrogel of polyacrylamide (PAAm) and sodium alginate (SA) using a simple one-pot method. PAAm/SA/NaCl-Mo7 hydrogel has excellent conductivity (175.9 S/cm), water retention capacity and anti-freezing properties, which can work normally at a low temperature of -28.4 °C. In addition, the prepared PAAm/SA/NaCl-Mo7 hydrogel exhibits fast response (<15 s), high transparency (>70 %), good toughness (maximum elongation up to 1500 %), good cyclic compression properties at high compressive strains (60 %), good biocompatibility (78.5 %), stable reversible discolouration and excellent sensing properties, which can be used for photoelectric display, information storage and motion monitoring. This work provides a new inspiration for the development of flexible electronic skin devices.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Resinas Acrílicas / Cloreto de Sódio / Hidrogéis / Condutividade Elétrica / Alginatos Limite: Humans Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Resinas Acrílicas / Cloreto de Sódio / Hidrogéis / Condutividade Elétrica / Alginatos Limite: Humans Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2024 Tipo de documento: Article