Your browser doesn't support javascript.
loading
Design, synthesis, and bioevaluation of SOS1 PROTACs derived from pyrido[2,3-d]pyrimidin-7-one-based SOS1 inhibitor.
Wang, Kun; Zhou, Zehui; Ma, Xinyi; Xu, Jiahang; Xu, Wangyang; Zhou, Guizhen; Zhou, Chuan; Li, Huajie; Zheng, Mingyue; Zhang, Sulin; Xu, Tianfeng.
Afiliação
  • Wang K; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
  • Zhou Z; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Ma X; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
  • Xu J; University of Chinese Academy of Sciences, Beijing 100049, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; School of Pharmaceutical Science and Technology,
  • Xu W; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
  • Zhou G; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
  • Zhou C; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
  • Li H; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study,
  • Zheng M; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; University of Chinese Academy of Sciences, Beijing 100049, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science
  • Zhang S; University of Chinese Academy of Sciences, Beijing 100049, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China. Electronic address: slzhang@simm.ac.cn.
  • Xu T; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 10004
Bioorg Med Chem Lett ; 107: 129780, 2024 Jul 15.
Article em En | MEDLINE | ID: mdl-38714262
ABSTRACT
Oncogenic KRAS mutations drive an approximately 25 % of all human cancers. Son of Sevenless 1 (SOS1), a critical guanine nucleotide exchange factor, catalyzes the activation of KRAS. Targeting SOS1 degradation has engaged as a promising therapeutic strategy for KRAS-mutant cancers. Herein, we designed and synthesized a series of novel CRBN-recruiting SOS1 PROTACs using the pyrido[2,3-d]pyrimidin-7-one-based SOS1 inhibitor as the warhead. One representative compound 11o effectively induced the degradation of SOS1 in three different KRAS-mutant cancer cell lines with DC50 values ranging from 1.85 to 7.53 nM. Mechanism studies demonstrated that 11o-induced SOS1 degradation was dependent on CRBN and proteasome. Moreover, 11o inhibited the phosphorylation of ERK and displayed potent anti-proliferative activities against SW620, A549 and DLD-1 cells. Further optimization of 11o may provide us promising SOS1 degraders with favorable drug-like properties for developing new chemotherapies targeting KRAS-driven cancers.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Desenho de Fármacos / Proteína SOS1 / Proliferação de Células / Antineoplásicos Limite: Humans Idioma: En Revista: Bioorg Med Chem Lett Assunto da revista: BIOQUIMICA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Desenho de Fármacos / Proteína SOS1 / Proliferação de Células / Antineoplásicos Limite: Humans Idioma: En Revista: Bioorg Med Chem Lett Assunto da revista: BIOQUIMICA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China