Your browser doesn't support javascript.
loading
Superhydrophobic, Highly Conductive, and Trilayered Fabric with Connected Carbon Nanotubes for Energy-Efficient Electrical Heating.
Yu, Xi; Ye, Jinlin; Li, Canjian; Yu, Yue; Yang, Huiting; Wen, Lingrui; Huang, Jinfu; Xu, Wanhao; Wu, Yeer; Zhou, Qiang; Liu, Zijin; Li, Bingyan; Wang, Lihuan; Yu, Hui; Yan, Jianhua; Wang, Xianfeng.
Afiliação
  • Yu X; Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China.
  • Ye J; Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China.
  • Li C; Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China.
  • Yu Y; Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China.
  • Yang H; Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China.
  • Wen L; Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China.
  • Huang J; Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China.
  • Xu W; Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China.
  • Wu Y; Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China.
  • Zhou Q; Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China.
  • Liu Z; Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China.
  • Li B; Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China.
  • Wang L; Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China.
  • Yu H; Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China.
  • Yan J; Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China.
  • Wang X; Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
ACS Appl Mater Interfaces ; 16(20): 26932-26942, 2024 May 22.
Article em En | MEDLINE | ID: mdl-38717983
ABSTRACT
Current electrically heated fabrics provide heat in cold climates, suffer from abundant wasted radiant heat energy to the external environment, and are prone to damage by water. Thus, constructing energy-efficient and superhydrophobic conductive fabrics is in high demand. Therefore, we propose an effective and facile methodology to prepare a superhydrophobic, highly conductive, and trilayered fabric with a connected carbon nanotube (CNT) layer and a titanium dioxide (TiO2) nanoparticle heat-reflecting layer. We construct polyamide/fluorinated polyurethane (PA/FPU) nanofibrous membranes via first electrospinning, then performing blade-coating with the polyurethane (PU) solution with CNTs, and finally fabricating FPU/TiO2 nanoparticles via electrospraying. This strategy causes CNTs to be connected to form a conductive layer and enables TiO2 nanoparticles to be bound together to form a porous, heat-reflecting layer. As a consequence, the as-prepared membranes demonstrate high conductivity with an electrical conductivity of 63 S/m, exhibit rapid electric-heating capacity, and exhibit energy-efficient asymmetrical heating behavior, i.e., the heating temperature of the PA/FPU nanofibrous layer reaches more than 83 °C within 90 s at 24 V, while the heating temperature of the FPU/TiO2 layer only reaches 53 °C, as well as prominent superhydrophobicity with a water contact angle of 156°, indicating promising utility for the next generation of electrical heating textiles.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China