Your browser doesn't support javascript.
loading
Molecular-caged metal-organic frameworks for energy management.
Wu, Minghong; Lin, Gengye; Li, Rui; Liu, Xing; Liu, Shumei; Zhao, Jianqing; Xie, Weiqi.
Afiliação
  • Wu M; School of Materials Science and Engineering, Key Laboratory Guangdong High Property and Functional Polymer Materials, Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
  • Lin G; School of Materials Science and Engineering, Key Laboratory Guangdong High Property and Functional Polymer Materials, Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
  • Li R; School of Materials Science and Engineering, Key Laboratory Guangdong High Property and Functional Polymer Materials, Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
  • Liu X; School of Materials Science and Engineering, Key Laboratory Guangdong High Property and Functional Polymer Materials, Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
  • Liu S; School of Materials Science and Engineering, Key Laboratory Guangdong High Property and Functional Polymer Materials, Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
  • Zhao J; School of Materials Science and Engineering, Key Laboratory Guangdong High Property and Functional Polymer Materials, Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
  • Xie W; School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
Sci Adv ; 10(19): eadl4449, 2024 May 10.
Article em En | MEDLINE | ID: mdl-38718124
ABSTRACT
Metal-organic frameworks (MOFs) hold great promise for diverse applications when combined with polymers. However, a persistent challenge lies in the susceptibility of exposed MOF pores to molecule and polymer penetration, compromising the porosity and overall performance. Here, we design a molecular-caged MOF (MC-MOF) to achieve contracted window without sacrificing the MOF porosity by torsional conjugated ligands. These molecular cages effectively shield against the undesired molecule penetration during polymerization, thereby preserving the pristine porosity of MC-MOF and providing outstanding light and thermal management to the composites. The polymer containing 0.5 wt % MC-MOF achieves an 83% transmittance and an exceptional haze of 93% at 550 nanometers, coupled with remarkable thermal insulation. These MC-MOF/polymer composites offer the potential for more uniform daylighting and reduced energy consumption in sustainable buildings when compared to traditional glass materials. This work delivers a general method to uphold MOF porosity in polymers through molecular cage design, advancing MOF-polymer applications in energy and sustainability.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Adv Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Adv Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China