Your browser doesn't support javascript.
loading
Sensitivity of magnetic resonance elastography to extracellular matrix and cell motility in human prostate cancer cell line-derived xenograft models.
Kader, Avan; Snellings, Joachim; Adams, Lisa C; Gottheil, Pablo; Mangarova, Dilyana B; Heyl, Jennifer L; Kaufmann, Jan O; Moeckel, Jana; Brangsch, Julia; Auer, Timo A; Collettini, Federico; Sauer, Frank; Hamm, Bernd; Käs, Josef; Sack, Ingolf; Makowski, Marcus R; Braun, Jürgen.
Afiliação
  • Kader A; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Department of Biology, Chemistry and Pharmacy, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str.
  • Snellings J; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany. Electronic address: joachim.snellings@charite.de.
  • Adams LC; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Technical University of Munich, Department of Diagnostic and Interventional Radiology, Ismaninger Str. 22, 81675
  • Gottheil P; Peter Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany.
  • Mangarova DB; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany. Electronic address: dilyana.mangarova@charite.de.
  • Heyl JL; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany. Electronic address: jennifer.heyl@charite.de.
  • Kaufmann JO; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Bundesanstalt für Materialforschung und -prüfung (BAM), Division 1.5 Protein Analysis, Richard-Willstätter-Str. 1
  • Moeckel J; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany. Electronic address: jana.moeckel@charite.de.
  • Brangsch J; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Technical University of Munich, Department of Diagnostic and Interventional Radiology, Ismaninger Str. 22, 81675
  • Auer TA; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Berlin Insitute of Health (BIH), Berlin, Germany. Electronic address: timo-alexander.auer@charite.de.
  • Collettini F; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Berlin Insitute of Health (BIH), Berlin, Germany. Electronic address: federico.collettini@charite.de.
  • Sauer F; Peter Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany. Electronic address: sauer@physik.uni-leipzig.de.
  • Hamm B; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany. Electronic address: bernd.hamm@charite.de.
  • Käs J; Peter Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany. Electronic address: jkaes@uni-leipzig.de.
  • Sack I; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany. Electronic address: ingolf.sack@charite.de.
  • Makowski MR; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Technical University of Munich, Department of Diagnostic and Interventional Radiology, Ismaninger Str. 22, 81675
  • Braun J; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany. Electronic address: juergen.braun@charite.de.
Biomater Adv ; 161: 213884, 2024 Jul.
Article em En | MEDLINE | ID: mdl-38723432
ABSTRACT
Prostate cancer (PCa) is a significant health problem in the male population of the Western world. Magnetic resonance elastography (MRE), an emerging medical imaging technique sensitive to mechanical properties of biological tissues, detects PCa based on abnormally high stiffness and viscosity values. Yet, the origin of these changes in tissue properties and how they correlate with histopathological markers and tumor aggressiveness are largely unknown, hindering the use of tumor biomechanical properties for establishing a noninvasive PCa staging system. To infer the contributions of extracellular matrix (ECM) components and cell motility, we investigated fresh tissue specimens from two PCa xenograft mouse models, PC3 and LNCaP, using magnetic resonance elastography (MRE), diffusion-weighted imaging (DWI), quantitative histology, and nuclear shape analysis. Increased tumor stiffness and impaired water diffusion were observed to be associated with collagen and elastin accumulation and decreased cell motility. Overall, LNCaP, while more representative of clinical PCa than PC3, accumulated fewer ECM components, induced less restriction of water diffusion, and exhibited increased cell motility, resulting in overall softer and less viscous properties. Taken together, our results suggest that prostate tumor stiffness increases with ECM accumulation and cell adhesion - characteristics that influence critical biological processes of cancer development. MRE paired with DWI provides a powerful set of imaging markers that can potentially predict prostate tumor development from benign masses to aggressive malignancies in patients. STATEMENT OF

SIGNIFICANCE:

Xenograft models of human prostate tumor cell lines, allowing correlation of microstructure-sensitive biophysical imaging parameters with quantitative histological methods, can be investigated to identify hallmarks of cancer.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Próstata / Movimento Celular / Matriz Extracelular / Técnicas de Imagem por Elasticidade Limite: Animals / Humans / Male Idioma: En Revista: Biomater Adv Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Próstata / Movimento Celular / Matriz Extracelular / Técnicas de Imagem por Elasticidade Limite: Animals / Humans / Male Idioma: En Revista: Biomater Adv Ano de publicação: 2024 Tipo de documento: Article