Your browser doesn't support javascript.
loading
A novel GO hoisted SnO2-BiOBr bifunctional catalyst for the remediation of organic dyes under illumination by visible light and electrocatalytic water splitting.
Dhillon, Manshu; Naskar, Abhishek; Kaushal, Neha; Bhansali, Shekhar; Saha, Avishek; Basu, Aviru Kumar.
Afiliação
  • Dhillon M; Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Mohali 140306, India.
  • Naskar A; Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Mohali 140306, India.
  • Kaushal N; CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30 C, Chandigarh, 160030, India.
  • Bhansali S; Academy of Scientific and Innovative Research (AcSIR-CSIO), Ghaziabad-201002, India.
  • Saha A; Electrical and Computer Engineering, Florida International University, Miami, FL 33199, USA.
  • Basu AK; Academy of Scientific and Innovative Research (AcSIR-CSIO), Ghaziabad-201002, India.
Nanoscale ; 16(26): 12445-12458, 2024 Jul 04.
Article em En | MEDLINE | ID: mdl-38775017
ABSTRACT
It is imperative to develop affordable multi-functional catalysts based on transition metals for various applications, such as dye degradation or the production of green energy. For the first time, we propose a simple chemical bath method to create a SnO2-BiOBr-rGO heterojunction with remarkable photocatalytic and electrocatalytic activities. After introducing graphene oxide (GO) into the SnO2-BiOBr nanocomposite, the charge separation, electron mobility, surface area, and electrochemical properties were significantly improved. The X-ray diffraction results show the successful integration of GO into the SnO2-BiOBr nanocomposite. Systematic material characterization by scanning and transmission electron microscopy showed that the photocatalysts are composed of uniformly distributed SnO2 nanoparticles (∼11 nm) on the regular nanosheets of BiOBr (∼94 nm) and rGO. The SnO2-BiOBr-rGO photocatalyst has outstanding photocatalytic activity when it comes to reducing a variety of organic dyes like rhodamine B (RhB) and methylene blue (MB). Within 90 minutes of visible light illumination, degradation of a maximum of 99% for MB and 99.8% for RhB was noted. The oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) performance was also tested for the ternary nanocomposite, and significantly lower overpotential values of 0.34 and -0.11 V (vs. RHE) at 10 mA cm-2 were observed for the OER and HER, respectively. Furthermore, the Tafel slope values are 34 and 39 mV dec-1 for the OER and HER, respectively. The catalytic degradation of dyes with visible light and efficient OER and HER performance offer this work a broad spectrum of potential applications.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanoscale Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Índia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanoscale Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Índia