Your browser doesn't support javascript.
loading
Longitudinal myelin content measures of slowly expanding lesions using 7T MRI in multiple sclerosis.
Huerta, Mina M; Conway, Devon S; Planchon, Sarah M; Thoomukuntla, Bhaskar; Se-Hong, Oh; Sakaie, Ken E; Ontaneda, Daniel; Nakamura, Kunio.
Afiliação
  • Huerta MM; School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
  • Conway DS; Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA.
  • Planchon SM; Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA.
  • Thoomukuntla B; Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA.
  • Se-Hong O; Department of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea.
  • Sakaie KE; Imaging Institute, Cleveland Clinic, Cleveland, Ohio, USA.
  • Ontaneda D; Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA.
  • Nakamura K; Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA.
J Neuroimaging ; 34(4): 451-458, 2024.
Article em En | MEDLINE | ID: mdl-38778455
ABSTRACT
BACKGROUND AND

PURPOSE:

Slowly expanding lesions (SELs) are thought to represent a subset of chronic active lesions and have been associated with clinical disability, severity, and disease progression. The purpose of this study was to characterize SELs using advanced magnetic resonance imaging (MRI) measures related to myelin and neurite density on 7 Tesla (T) MRI.

METHODS:

The study design was retrospective, longitudinal, observational cohort with multiple sclerosis (n = 15). Magnetom 7T scanner was used to acquire magnetization-prepared 2 rapid acquisition gradient echo and advanced MRI including visualization of short transverse relaxation time component (ViSTa) for myelin, quantitative magnetization transfer (qMT) for myelin, and neurite orientation dispersion density imaging (NODDI). SELs were defined as lesions showing ≥12% of growth over 12 months on serial MRI. Comparisons of quantitative measures in SELs and non-SELs were performed at baseline and over time. Statistical analyses included two-sample t-test, analysis of variance, and mixed-effects linear model for MRI metrics between lesion types.

RESULTS:

A total of 1075 lesions were evaluated. Two hundred twenty-four lesions (21%) were SELs, and 216 (96%) of the SELs were black holes. At baseline, compared to non-SELs, SELs showed significantly lower ViSTa (1.38 vs. 1.53, p < .001) and qMT (2.47 vs. 2.97, p < .001) but not in NODDI measures (p > .27). Longitudinally, only ViSTa showed a greater loss when comparing SEL and non-SEL (p = .03).

CONCLUSIONS:

SELs have a lower myelin content relative to non-SELs without a difference in neurite measures. SELs showed a longitudinal decrease in apparent myelin water fraction reflecting greater tissue injury.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Imageamento por Ressonância Magnética / Esclerose Múltipla / Bainha de Mielina Limite: Adult / Female / Humans / Male / Middle aged Idioma: En Revista: J Neuroimaging Assunto da revista: DIAGNOSTICO POR IMAGEM / NEUROLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Imageamento por Ressonância Magnética / Esclerose Múltipla / Bainha de Mielina Limite: Adult / Female / Humans / Male / Middle aged Idioma: En Revista: J Neuroimaging Assunto da revista: DIAGNOSTICO POR IMAGEM / NEUROLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos