Your browser doesn't support javascript.
loading
Two different types of hydrolases co-degrade ochratoxin A in a highly efficient degradation strain Lysobacter sp. CW239.
Fu, Xiaojie; Fei, Qingru; Zhang, Xuanjun; Li, Na; Zhang, Liang; Zhou, Yu.
Afiliação
  • Fu X; State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Heifei 230036, China.
  • Fei Q; State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Heifei 230036, China.
  • Zhang X; State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Heifei 230036, China.
  • Li N; State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Heifei 230036, China.
  • Zhang L; School of Tea and Food Science Technology, Anhui Agricultural University, Heifei 230036, China.
  • Zhou Y; State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Heifei 230036, China; School of Tea and Food Science Technology, Anhui Agricultural University, Heifei 230036, China; Joint Research Center for Food Nutrition and Health of lHM, Hefei 230036, China. Electronic
J Hazard Mater ; 473: 134716, 2024 Jul 15.
Article em En | MEDLINE | ID: mdl-38797074
ABSTRACT
Ochratoxin A (OTA) is a toxic secondary metabolite that widely contaminates agro-products and poses a significant dietary risk to human health. Previously, a carboxypeptidase CP4 was characterized for OTA degradation in Lysobacter sp. CW239, but the degradation activity was much lower than its host strain CW239. In this study, an amidohydrolase ADH2 was screened for OTA hydrolysis in this strain. The result showed that 50 µg/L OTA was completely degraded by 1.0 µg/mL rADH2 within 5 min, indicating ultra-efficient activity. Meanwhile, the two hydrolases (i.e., CP4 and ADH2) in the strain CW239 showed the same degradation manner, which transformed the OTA to ochratoxin α (OTα) and l-ß-phenylalanine. Gene mutants (Δcp4, Δadh2 and Δcp4-adh2) testing result showed that OTA was co-degraded by carboxypeptidase CP4 and amidohydrolase ADH2, and the two hydrolases are sole agents in strain CW239 for OTA degradation. Hereinto, the ADH2 was the overwhelming efficient hydrolase, and the two types of hydrolases co-degraded OTA in CW239 by synergistic effect. The results of this study are highly significant to ochratoxin A contamination control during agro-products production and postharvest.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Lysobacter / Ocratoxinas Idioma: En Revista: J Hazard Mater / J. hazard. mater / Journal of hazardous materials Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Lysobacter / Ocratoxinas Idioma: En Revista: J Hazard Mater / J. hazard. mater / Journal of hazardous materials Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China