Your browser doesn't support javascript.
loading
Regulating Zn2+ Migration-Diffusion Behavior by Spontaneous Cascade Optimization Strategy for Long-Life and Low N/P Ratio Zinc Ion Batteries.
Feng, Jie; Li, Xinyang; Ouyang, Yuxin; Zhao, Hongyang; Li, Na; Xi, Kai; Liang, Junyan; Ding, Shujiang.
Afiliação
  • Feng J; School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, 710049, P. R. Chi
  • Li X; School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, 710049, P. R. Chi
  • Ouyang Y; School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, 710049, P. R. Chi
  • Zhao H; School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, 710049, P. R. Chi
  • Li N; School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, 710049, P. R. Chi
  • Xi K; School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, 710049, P. R. Chi
  • Liang J; School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, 710049, P. R. Chi
  • Ding S; School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, 710049, P. R. Chi
Angew Chem Int Ed Engl ; : e202407194, 2024 May 31.
Article em En | MEDLINE | ID: mdl-38818621
ABSTRACT
Parasitic side reactions and dendrite growth on zinc anodes are formidable issues causing limited lifetime of aqueous zinc ion batteries (ZIBs). Herein, a spontaneous cascade optimization strategy is first proposed to regulate Zn2+ migration-diffusion behavior. Specifically, PAPE@Zn layer with separation-reconstruction properties is constructed in situ on Zn anode. In this layer, well-soluble poly(ethylene oxide) (PEO) can spontaneously separation to bulk electrolyte and weaken the preferential coordination between H2O and Zn2+ to achieve primary optimization. Meanwhile, poor-soluble polymerized-4-acryloylmorpholine (PACMO) is reconstructed on Zn anode as hydrophobic flower-like arrays with abundant zincophilic sites, further guiding the de-solvation and homogeneous diffusion of Zn2+ to achieve the secondary optimization. Cascade optimization effectively regulates Zn2+ migration-diffusion behavior, dendrite growth and side reactions of Zn anode are negligible, and the stability is significantly improved. Consequently, symmetrical cells exhibit stability over 4000 h (1 mA cm-2). PAPE@Zn//NH4 +-V2O5 full cells with a high current density of 15 A g-1 maintains 72.2 % capacity retention for 12000 cycles. Even better, the full cell demonstrates excellent performance of cumulative capacity of 2.33 Ah cm-2 at ultra-low negative/positive (N/P) ratio of 0.6 and a high mass-loading (~17 mg cm-2). The spontaneous cascade optimization strategy provides novel path to achieve high-performance and practical ZIBs.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2024 Tipo de documento: Article