Your browser doesn't support javascript.
loading
Characteristics of the Vasa Gene in Silurus asotus and Its Expression Response to Letrozole Treatment.
Yu, Miao; Wang, Fangyuan; Li, Muzi; Wang, Yuan; Gao, Xiangzhe; Zhang, Hanhan; Liu, Zhenzhu; Zhou, Zhicheng; Zhao, Daoquan; Zhang, Meng; Wang, Lei; Jiang, Hongxia; Qiao, Zhigang.
Afiliação
  • Yu M; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
  • Wang F; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
  • Li M; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
  • Wang Y; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
  • Gao X; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
  • Zhang H; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
  • Liu Z; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
  • Zhou Z; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
  • Zhao D; Yiluo River Aquatic Biology Field Scientific Observation and Research Station in the Yellow River Basin of Henan Province, Lushi, Sanmenxia City 472200, China.
  • Zhang M; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
  • Wang L; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
  • Jiang H; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
  • Qiao Z; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
Genes (Basel) ; 15(6)2024 Jun 08.
Article em En | MEDLINE | ID: mdl-38927693
ABSTRACT
The identification and expression of germ cells are important for studying sex-related mechanisms in fish. The vasa gene, encoding an ATP-dependent RNA helicase, is recognized as a molecular marker of germ cells and plays a crucial role in germ cell development. Silurus asotus, an important freshwater economic fish species in China, shows significant sex dimorphism with the female growing faster than the male. However, the molecular mechanisms underlying these sex differences especially involving in the vasa gene in this fish remain poorly understood. In this work, the vasa gene sequence of S. asotus (named as Savasa) was obtained through RT-PCR and rapid amplification of cDNA end (RACE), and its expression in embryos and tissues was analyzed using qRT-PCR and an in situ hybridization method. Letrozole (LT) treatment on the larvae fish was also conducted to investigate its influence on the gene. The results revealed that the open reading frame (ORF) of Savasa was 1989 bp, encoding 662 amino acids. The SaVasa protein contains 10 conserved domains unique to the DEAD-box protein family, showing the highest sequence identity of 95.92% with that of Silurus meridionalis. In embryos, Savasa is highly expressed from the two-cell stage to the blastula stage in early embryos, with a gradually decreasing trend from the gastrula stage to the heart-beating stage. Furthermore, Savasa was initially detected at the end of the cleavage furrow during the two-cell stage, later condensing into four symmetrical cell clusters with embryonic development. At the gastrula stage, Savasa-positive cells increased and began to migrate towards the dorsal side of the embryo. In tissues, Savasa is predominantly expressed in the ovaries, with almost no or lower expression in other detected tissues. Moreover, Savasa was expressed in phase I-V oocytes in the ovaries, as well as in spermatogonia and spermatocytes in the testis, implying a specific expression pattern of germ cells. In addition, LT significantly upregulated the expression of Savasa in a concentration-dependent manner during the key gonadal differentiation period of the fish. Notably, at 120 dph after LT treatment, Savasa expression was the lowest in the testis and ovary of the high concentration group. Collectively, findings from gene structure, protein sequence, phylogenetic analysis, RNA expression patterns, and response to LT suggest that Savasa is maternally inherited with conserved features, serving as a potential marker gene for germ cells in S.asotus, and might participate in LT-induced early embryonic development and gonadal development processes of the fish. This would provide a basis for further research on the application of germ cell markers and the molecular mechanisms of sex differences in S. asotus.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peixes-Gato / Proteínas de Peixes / RNA Helicases DEAD-box / Letrozol Limite: Animals Idioma: En Revista: Genes (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peixes-Gato / Proteínas de Peixes / RNA Helicases DEAD-box / Letrozol Limite: Animals Idioma: En Revista: Genes (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China