Your browser doesn't support javascript.
loading
Proteomic and metabolic analysis of Moorella thermoacetica-g-C3N4 nanocomposite system for artificial photosynthesis.
Shen, Jiayuan; Qiao, Liang.
Afiliação
  • Shen J; Department of Chemistry, and Minhang Hospital, Fudan University, Shanghai, 200000, China.
  • Qiao L; Department of Chemistry, and Minhang Hospital, Fudan University, Shanghai, 200000, China. Electronic address: liang_qiao@fudan.edu.cn.
Talanta ; 278: 126479, 2024 Jun 26.
Article em En | MEDLINE | ID: mdl-38941811
ABSTRACT
Artificial photosynthesis by microbe-semiconductor biohybrid systems has been demonstrated as a valuable strategy in providing sustainable energy and in carbon fixation. However, most of the developed biohybrid systems for light harvesting employ heavy metal materials, especially cadmium sulfide (CdS), which normally cause environmental pollution and restrict the widespread of the systems. Herein, we constructed an environmentally friendly biohybirid system based on a typical acetogenic bacteria, Moorella thermoacetica, coupling with a carbon-based semiconductor, graphitic carbon nitride (g-C3N4), to realize light-driven carbon fixation. The proposed biohybrid system displayed outstanding acetate productivity with a quantum yield of 2.66 ± 0.43 %. Non-targeted proteomic analysis indicated that the physiological activity of the bacteria was improved, coupling with the non-toxic material. We further proposed the mechanisms of energy generation, electron transfer and CO2 fixation of the irradiated biohybrid system by proteomic and metabolomic characterization. With the photoelectron generated in g-C3N4 under illumination, CO2 is finally converted to acetate via the Wood-Ljungdahl pathway (WLP). Other associated pathways were also proved to be activated, providing extra energy or substrates for acetate production. The study reveals that the future focus of the development of biohybrid systems for light harvesting can be on the metal-free biocompatible material, which can activate the expression of the key enzymes involved in the electron transfer and carbon metabolism under light irradiation.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Talanta Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Talanta Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China