Your browser doesn't support javascript.
loading
Defect Engineering of MoTe2 via Thiol Treatment for Type III van der Waals Heterojunction Phototransistor.
Jeong, Yeonsu; Han, Bin; Tamayo, Adrián; Claes, Nathalie; Bals, Sara; Samorì, Paolo.
Afiliação
  • Jeong Y; University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires, UMR 7006, 8 Allée Gaspard Monge, Strasbourg 67000, France.
  • Han B; University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires, UMR 7006, 8 Allée Gaspard Monge, Strasbourg 67000, France.
  • Tamayo A; University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires, UMR 7006, 8 Allée Gaspard Monge, Strasbourg 67000, France.
  • Claes N; Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium.
  • Bals S; Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium.
  • Samorì P; University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires, UMR 7006, 8 Allée Gaspard Monge, Strasbourg 67000, France.
ACS Nano ; 18(28): 18334-18343, 2024 Jul 16.
Article em En | MEDLINE | ID: mdl-38960378
ABSTRACT
Molybdenum ditelluride (MoTe2) nanosheets have displayed intriguing physicochemical properties and opto-electric characteristics as a result of their tunable and small band gap (Eg ∼ 1 eV), facilitating concurrent electron and hole transport. Despite the numerous efforts devoted to the development of p-type MoTe2 field-effect transistors (FETs), the presence of tellurium (Te) point vacancies has caused serious reliability issues. Here, we overcome this major limitation by treating the MoTe2 surface with thiolated molecules to heal Te vacancies. Comprehensive materials and electrical characterizations provided unambiguous evidence for the efficient chemisorption of butanethiol. Our thiol-treated MoTe2 FET exhibited a 10-fold increase in hole current and a positive threshold voltage shift of 25 V, indicative of efficient hole carrier doping. We demonstrated that our powerful molecular engineering strategy can be extended to the controlled formation of van der Waals heterostructures by developing an n-SnS2/thiol-MoTe2 junction FET (thiol-JFET). Notably, the thiol-JFET exhibited a significant negative photoresponse with a responsivity of 50 A W-1 and a fast response time of 80 ms based on band-to-band tunneling. More interestingly, the thiol-JFET displayed a gate tunable trimodal photodetection comprising two photoactive modes (positive and negative photoresponse) and one photoinactive mode. These findings underscore the potential of molecular engineering approaches in enhancing the performance and functionality of MoTe2-based nanodevices as key components in advanced 2D-based optoelectronics.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Nano Ano de publicação: 2024 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Nano Ano de publicação: 2024 Tipo de documento: Article País de afiliação: França