Your browser doesn't support javascript.
loading
The effects of plastisphere on the physicochemical properties of microplastics.
Tang, Kuok Ho Daniel; Li, Ronghua.
Afiliação
  • Tang KHD; Department of Environmental Science, University of Arizona, Tucson, AZ, 85721, USA. danielkhtang@arizona.edu.
  • Li R; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China.
Article em En | MEDLINE | ID: mdl-38960926
ABSTRACT
The plastisphere is the microbial communities that grow on the surface of plastic debris, often used interchangeably with plastic biofilm or biofouled plastics. It can affect the properties of the plastic debris in multiple ways. This review aims to present the effects of the plastisphere on the physicochemical properties of microplastics systematically. It highlights that the plastisphere modifies the buoyancy and movement of microplastics by increasing their density, causing them to sink and settle out. Smaller and film microplastics are likely to settle sooner because of larger surface areas and higher rates of biofouling. Biofouled microplastics may show an oscillating movement in waterbodies when settling due to diurnal and seasonal changes in the growth of the plastisphere until they come close to the bottom of the waterbodies and are entrapped by sediments. The plastisphere enhances the adsorption of microplastics for metals and organic pollutants and shifts the adsorption mechanism from intraparticle diffusion to film diffusion. The plastisphere also increases surface roughness, reduces the pore size, and alters the overall charge of microplastics. Charge alteration is primarily attributed to changes in the functional groups on microplastic surfaces. The plastisphere introduces carbonyl, amine, amide, hydroxyl, and phosphoryl groups to microplastics, causing an increase in their surface hydrophilicity, which could alter their adsorption behaviors for heavy metals. The plastisphere may act as a reactive barrier that enhances the leaching of polar additives. It may anchor bacteria that can break down plastic additives, resulting in decreased crystallinity of microplastics. This review contributes to a better understanding of how the plastisphere alters the fate, transport, and environmental impacts of microplastics. It points to the possibility of engineering the plastisphere to improve microplastic biodegradation.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Bioprocess Biosyst Eng Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Bioprocess Biosyst Eng Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos