Your browser doesn't support javascript.
loading
A pharmacokinetic-pharmacodynamic analysis of l-glutamine for the treatment of sickle cell disease: Implications for understanding the mechanism of action and evaluating response to therapy.
Sadaf, Alina; Dong, Min; Pfeiffer, Amanda; Korpik, Jennifer; Kalfa, Theodosia A; Latham, Teresa; Vinks, Alexander A; Ware, Russell E; Quinn, Charles T.
Afiliação
  • Sadaf A; Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
  • Dong M; Division of Translational and Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
  • Pfeiffer A; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
  • Korpik J; Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
  • Kalfa TA; Erythrocyte Diagnostic Laboratory, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
  • Latham T; Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
  • Vinks AA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
  • Ware RE; Erythrocyte Diagnostic Laboratory, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
  • Quinn CT; Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
Br J Haematol ; 2024 Jul 08.
Article em En | MEDLINE | ID: mdl-38977270
ABSTRACT
The mechanisms of action of l-glutamine for the treatment of sickle cell disease (SCD) are not well understood and there are no validated clinical biomarkers to assess response. We conducted a three-week, dose-ascending trial of glutamine and measured the pharmacokinetic (PK) exposure parameters, peak concentration (Cmax) and area under the curve (AUC). We used a panel of biomarkers to investigate the pharmacodynamics (PD) of glutamine and studied PK-PD relationships. There was no plasma accumulation of glutamine, glutamate, arginine or other amino acids over time, but modestly improved arginine bioavailability was observed. In standard analysis by dose levels over time, there were no measurable effects on blood counts, viscosity, ektacytometry or reactive oxygen species (ROS). In PK-PD analysis, however, higher glutamine exposure (Cmax or AUC) was associated with increased whole blood viscosity and cellular dehydration, yet also with higher haemoglobin concentration, increased haematocrit-to-viscosity ratio, decreased reticulocyte ROS, improved RBC deformability and decreased point of sickling. This novel PK-PD analysis identified biomarkers reflecting the positive and negative effects of glutamine, helping to elucidate its mechanisms of action in SCD. PK-optimized dosing to achieve glutamine exposure (AUC or Cmax) that is associated with salutary biological effects should be studied to support its therapeutic use.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Br J Haematol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Br J Haematol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos