Your browser doesn't support javascript.
loading
Hierarchical Self-Assembly of Hyperbranched Polymer-Based Topological Supramolecular Amphiphiles.
Zhang, Han; Pan, Yi; Li, Yinghua; Li, Chen; Wang, Yuling; Jiang, Wenfeng; Xu, Fugui; Mai, Yiyong; Zhou, Yongfeng.
Afiliação
  • Zhang H; School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
  • Pan Y; School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
  • Li Y; School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
  • Li C; School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
  • Wang Y; School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
  • Jiang W; School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
  • Xu F; School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
  • Mai Y; School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
  • Zhou Y; School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
Chemistry ; 30(54): e202402231, 2024 Sep 25.
Article em En | MEDLINE | ID: mdl-39008402
ABSTRACT
Supramolecular polymers (SPs) are constructed through non-covalent interactions. The dynamic or reversible nature of SPs endows them unique physical and chemical properties, such as self-adaptive and stimuli-response abilities. The topological structures of SPs play an important role in determining the physicochemical properties and functionality. Hyperbranched polymers (HBPs) are highly branched 3D macromolecules with linear, dendritic, and terminal units, which makes them versatile candidates for the construction of SPs with fascinating architectures. The resultant HBP-based SPs perfectly integrated the dynamic/reversible nature of SPs and the 3D topological features and multifunctionality of HBP polymers. To date, various types of HBP-based SPs and their assemblies have been constructed, and their potential applications have been explored as well. This article overviews the current progress on self-assembly of HBP-based SPs. The strategies for construction of HBP-based SPs and their assemblies are discussed. Typical potential applications of the assemblies of HBP-based SPs are also introduced.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Chemistry Assunto da revista: QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Chemistry Assunto da revista: QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China